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1. Introduction

THIS PAPER ANALYZES the economics
of wagering markets, specifically

markets in which participants take a fi-
nancial position on the outcome of a
sporting event such as a horse race or a
football game. Although these markets
are a tiny feature of most economies,
they present significant opportunities for
economic analysis. These stem from the
fact that wagering markets are especially
simple financial markets, in which the
scope of the pricing problem is reduced.
As a result, wagering markets can pro-
vide a clear view of pricing issues which
are more complicated elsewhere.

Two basic questions form the root of
the research analyzed in this paper.
First, given that expected returns in the
aggregate are negative, why do people
trade in these markets? Second, are the
prices, i.e. odds and point spreads, we
observe consistent with equilibrium
models of agents who make informed,
optimizing choices? These questions do
not have simple answers, but in attack-
ing them the literature has deepened
our understanding of the forces at work
in wagering markets and elsewhere.

Early work on wagering markets fol-
lowed post-war advances in expected
utility theory. These studies had the

modest aim of using data on racetrack
betting to examine risk-taking behavior
in a simple, repeated context. The as-
sumption, explicit in William McGlothin
(1956, p. 605) and implicit elsewhere,
was that “there is sufficient compara-
bility among individuals to make an
investigation of group risk-taking be-
havior meaningful.” This approach, in
which aggregate data is used to charac-
terize the preferences of a representa-
tive agent, was a successful first step in
developing and explaining basic stylized
facts. However, many results from re-
cent research cannot be explained
within this framework.

The efficient markets hypothesis has
proven to be a more flexible empirical
tool. Since these are gambling (as op-
posed to capital) markets, efficiency im-
plies that the expected rate of return to
bettors has an upper bound of zero; i.e.,
it denies the existence of profitable
wagering opportunities. Although some
papers are concerned with this issue in
a narrow sense, many analyses exploit
features unique to wagering markets to
study questions of general interest in
economics and finance. The optimality
of learning in a stochastic environment,
the nature of the error term in pricing
models, and the identification of in-
formed trading are examples where the
concept of market efficiency has been
creatively employed.

To preview the subsequent discus-
sion, there is a substantial amount of
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evidence that prices set in wagering
markets are, to a first approximation,
efficient forecasts of outcomes. Yet
there are important (and interesting)
exceptions to this rule. These excep-
tions often highlight the effects of dif-
ferences in information possessed by
different agents. Ultimately, it is clear
that prices formed in the wagering mar-
ket aggregate scarce information from
diverse sources. An asset-pricing frame-
work which assumes agents with identi-
cal information and identical prefer-
ences is incapable of explaining these
findings. Models focusing on diverse in-
formation, heterogeneous agents, and
transaction costs are required to better
understand these markets.

Section 2 introduces the institutions,
concepts, and notation that form the ba-
sis for the subsequent discussion of em-
pirical work. It is particularly important
to be clear about what is meant by the
term “efficient” in various contexts.
This section uses a simple model of the
wagering market as an example to
clarify this issue. This example, which
emphasizes differential motivations and
information of market participants,
helps to explain evidence that is
inconsistent with a generic concept of
efficiency.

Section 3 considers the motivation
for gambling. It is important to at least
ask the question “why do people trade
in these markets” even if the answers
are not completely satisfying. The rep-
resentative agent model of a wagering
market based on expected utility maxi-
mization with local risk preference is
discussed in detail here.

The bulk of the discussion considers
the empirical evidence on the nature of
prices in these markets. Section 4
reviews the literature on racetrack
betting, with special attention given to
the favorite-long shot bias. Section 5
focuses on the point spread betting

market for North American football and
basketball games. Section 6 attempts to
put these findings in perspective.

2. Odds, Institutions, and Efficiency

2.1 Odds and Institutions

Betting on athletic events dates to an-
cient times. The indigenous population
of North America, for example, bet on
foot races and ball games (Stewart Culin
1921). The Circus Maximus in Rome was
one of many racetracks scattered across
the Roman Empire (John Humphrey 1986).
This arena drew crowds of 260,000 peo-
ple, who were described en route to the
stadium as “already in a fury of anxiety
about their bets.”2  

The laws regulating wagering markets
are the result of a perpetual tug of war
between gambling interests and reform-
ers.3  In the United States, pari-mutuel
markets have been the principal means
of wagering on horse races, primarily
because state prohibitions on bookmak-
ing were passed early in the 20th cen-
tury. Currently, bookmaking on sport-
ing events in the U.S. is legal only in
Nevada. This market has grown rapidly,
in part due to reductions in the Federal
excise tax on wagering from 10 percent
to 0.25 percent. Between 1972 and
1995, the annual wagering on sports
(exclusive of horse races) in Nevada
grew more than two hundredfold, from
$1 million to over $2 billion.4  

2 Tertulian, an opponent of gambling, quoted in
H. A. Harris, 1972, p. 229.

3 See Reuven Brenner and Gabriele Brenner
(1990, Ch. 5); also Wray Vamplew (1976) on book-
making in the U.K., and William Robertson (1964,
pp. 195–200 and 299–301) on racetrack betting in
the U.S. John Findlay (1986) and Roger Longrigg
(1972) provide informative histories of gambling
in the U.S., and horse racing throughout the
world, respectively.

4 These figures are from the Monthly Revenue
Report issued by the Nevada Gaming Control
Board. The illegal market is believed to be far
greater in size; Gaming and Wagering Business
Magazine estimated it to be $20.7 billion in 1988.
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Three forms of wagering are promi-
nent in the literature covered here:
pari-mutuel odds, odds offered by book-
makers, and point spreads offered by
bookmakers. The pari-mutuel system is
exclusively used by racetracks in North
America, France, Hong Kong, and Ja-
pan, and coexists with a bookmaking
market in Australia and Great Britain.
Nevada bookmakers take bets on races
at major tracks, and offer odds or point
spreads on team sports such as baseball,
basketball, and football. The legal book-
making market is less restricted, more
extensive, and more liquid in Great
Britain and Australia.

In pari-mutuel betting, a predeter-
mined percentage is taken out of the
betting pool to cover the market
maker’s costs, and the remainder is re-
turned to winning bettors in proportion
to their individual stake. Consider a
pari-mutuel betting pool on the winner
of a horse race. Let Wi be the total
dollars bet on horse i to win, and
W = Σi = 1,nWi denote the total wagered
on all n horses. Also, denote horse i’s
share of the win pool as wi = Wi ⁄ W. The
takeout rate is τ, and the fraction
Q = (1 − τ) of the wagering pool is re-
turned to winning bettors. The gross re-
turn to a winning $1 bet on horse i is
thus:5 

Ri = QW ⁄ Wi = Q ⁄ wi (1)
Let Oi = Ri − 1 denote the odds

against horse i, which measure the net
return per dollar wagered. In the pari-
mutuel system, the actual payoffs to

winning bettors are determined once
and for all at the close of the betting
period.

Bookmakers offer their patrons a set
of payoffs conditional on the outcome
of a given event. The payoffs offered
may change during the betting period,
but the payoff to each bet is determined
at the time the bet is placed. The return
conditional on winning is thus known at
the time of the wager, in contrast to the
pari-mutuel system, where heavy bet-
ting late in the period can reduce re-
turns below acceptable levels.6  Indi-
viduals who make bets large enough to
affect the odds naturally prefer to bet
with a bookmaker.

Point spread betting on football
games is the staple of the Las Vegas
sports betting market. In a point spread
wager the payoff depends on the differ-
ence in points scored by the two oppos-
ing teams. Point spreads (PS) are typi-
cally reported as the number of points
by which one team is favored to beat
another. Define the actual difference in
points, DP, as the points scored by the
favored team less those scored by the
underdog. Bets on the favorite pay off
when DP − PS > 0, bets on the under-
dog pay off when DP − PS < 0, and all
bets are refunded when DP = PS. The
“eleven for ten rule” characterizes stan-
dard terms in the Las Vegas market,
where τ = .1 and successful bets return
net winnings of $1 to every $(1 + τ)
wagered.

It is easy to see how the point spread
represents a price in this market. Let p
represent the probability that wagers on5 This is a simplification. A typical pari-mutuel

system truncates the payoff to the nearest 5 cents
on the dollar, with a minimum payoff of 5 cents on
the dollar. Let tr(x) truncate x to the closest inte-
ger. The payoff determined by the system just de-
scribed is Ri = max(1.05, .05*tr(20QW/Wi)). It is
extremely rare for the minimum to be binding in
win betting, although it does arise periodically in
show betting (where bets on the top three finish-
ers receive payoffs) in races with extreme favor-
ites.

6 There is an important exception to this rule. In
Britain’s betting shops it is common to make wa-
gers at the “starting price,” which is the officially
determined odds prevailing in the bookmaking
market at post time of the race. The unknown na-
ture of the return is thus similar to that in the
pari-mutuel system. Note that many of these bets
are made before the market on the race opens;
hence the odds are not yet known.
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the favorite pay off; i.e. p = prob(DP −
PS) > 0. The expected cost of an at-
tempt to gain $1 by betting on the fa-
vorite is the amount wagered times the
probability of losing, or $(1 + τ)(1 –
p).7  Since p falls as PS increases, the
expected cost of a wager on the favored
team, i.e. its price, is increasing in PS.

2.2 Efficiency Defined

Although there is no single definition
of market efficiency, there are several
concepts that are widely utilized in vari-
ous empirical settings. This section
introduces three concepts that will be
referred to in the paper. The most
restrictive of the three requires that
expected returns be equal across wager-
ing prospects.

Constant Returns. The constant ex-
pected returns model is the basis for
many investigations of the efficiency of
racetrack betting. If it is assumed that
the takeout rate τ = 0, and that all
agents are fully informed, have identical
risk-neutral preferences, and maximize
wealth, an immediate implication of
optimizing behavior is that the expected
return from betting on all horses equals
1. This is easily seen. Let pi be the
probability that horse i wins, i = 1, ..., n.
Using (1), the expected return to bet-
ting $1 on horse i is given by
ERi = piQ ⁄ wi.

Consider a value-weighted portfolio
with weights vi equal to the share of the
win pool for each horse, vi = wi. The
return to a value-weighted portfolio is
important since it represents the return
to the representative agent. Q = 1 when
τ = 0, thus the expected (and actual) re-
turn to the value-weighted portfolio is
Σi vi pi ⁄ wi = Σi pi = 1.

Now suppose ERk > 1. This implies
that the expected return to a value

weighted portfolio of all horses exclud-
ing k is less than 1. Since all agents are
equally informed and have identical
preferences, all agents observe that
their wealth is increased by betting on
horse k. Additional betting on horse k
increases wk, reduces ERk, and in-
creases the expected return for all other
horses. Hence ERk > 1 cannot repre-
sent an equilibrium. This argument
extends to all n horses. Expected re-
turns of 1 for all n horses is thus
required for equilibrium this setup.
When τ > 0, equilibrium assuming con-
stant expected returns requires that the
return to any value weighted portfolio
of all horses is Q = (1 − τ) < 1.

Subjective probabilities refer to the
betting market’s estimate of each
horse’s chance of winning the race. This
term has its root in the constant returns
model. Let the subjective probability
that horse i wins the race be si, and
satisfy the equation Qsi ⁄ wi = Q. That is,
people bet such that they expect the
return from each horse to equal Q. This
assumption is the basis for using bet-
ting shares from the win pool, wi to
measure si. Further, assume that si = pi.
If the constant returns model is true,
then wi = pi —horse i’s share of the win
pool measures its true probability of
winning.

Empirical analyses which examine the
rate of return to wagers across different
classes of prospects (categories of
horses) implicitly test a version of the
constant returns model where the hy-
pothesized return is Q < 1. The theo-
retical basis for such tests is weak, how-
ever, since the motivation for wagering
in the presence of a positive takeout
rate must be addressed. A preference
for gambling must be introduced, and
this preference must be “just right” to
generate constant returns when τ > 0.
Local risk-loving in a utility of wealth
framework will not generate constant

7 We can assume prob(DP=PS)=0 with no loss of
generality, since bets are refunded when DP=PS.
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returns in equilibrium, as shown by
Richard Quandt (1986) and discussed in
Section 3.

The Absence of a Profit Opportunity
and Efficient Point Spreads.  Many
papers calculate the profitability of
wagering rules. These tests are moti-
vated by the idea that gambling markets
can’t simultaneously yield profits for
both market makers and the aggregate
betting public. Since profits for market
makers must be non-negative, the exis-
tence of profitable wagering rules is, at
a minimum, inconsistent with informed
behavior by bettors. A simple test of the
absence of profit opportunities concept
of efficiency examines returns to follow-
ing a particular wagering rule. Rejec-
tion of the hypothesis that ERk ≤ 1
would provide statistical evidence
against the absence of profit opportuni-
ties concept of efficiency.

In point spread betting, the absence
of a profit opportunity restricts the
probability of making a successful point
spread wager. With zero takeout, pay-
offs are at odds of 1 to 1, and this con-
cept of efficiency implies (i) that the
probability of a successful wager is .5,
and (ii) that PS is the median of the DP
distribution.

Takeout weakens the implication.
Again, let p be the probability that
bets on the favorite are winners, with
odds set at 1 to (1 + τ). The absence of
a profit opportunity requires that the
expected return to a bet on the favorite
be no greater than the cost of a wager,
i.e., that p(1 + (1 + τ)) ≤ (1 + τ). The same
requirement must hold for wagers on
the underdog, which restricts (1 − p)
(1 + (1 + τ)) ≤ (1 + τ). Combining these
conditions, the absence of a profit op-
portunity requires that8 

1 ⁄ (2 + τ) ≤ p ≤ (1 + τ) ⁄ (2 + τ) (2)

which is less restrictive than the median
condition when τ > 0 .

Equilibrium Pricing Functions. The
equilibrium of an explicit model can be
viewed as characterization of efficient
prices. Equilibrium pricing functions
depend importantly on the information
structure and behavioral assertions im-
posed on market participants. Examples
include Quandt (1986) and Hyun Song
Shin (1992), two leading models of the
favorite-long shot bias.

Pricing functions derived from ex-
plicit models are important because they
fill the gap between the two generic
concepts of efficiency discussed above.
The absence of profit opportunities is
too weak to explain some persistent fea-
tures of the data which are inconsistent
with constant returns. The favorite-long
shot bias is one such example.

If one insists that the efficiency con-
cept be restricted to models in which all
agents are fully informed and share
common preferences, then equilibrium
pricing functions derived under alterna-
tive assumptions would not qualify as
efficient. I believe a broader definition
of efficiency is warranted. Suppose we
consider a model in which uninformed
agents have a taste for betting on
horses, and a group of informed bettors
maximizes a concave function of wealth.
Let the model generate an equilibrium
in which both sets of agents are at least
as well off pursuing this activity than
the next best alternative, with no profit
opportunity for new entrants. Basic
models of exchange characterize such
outcomes as efficient. However, the
constant returns concept of financial
market efficiency would exclude this
pricing function if, for instance, the
expected return to an informed bettor
differed across categories of horses.
What is important is that we have test-
able models which predict observed
phenomena. For this reason, it is useful

8 This implication obviously holds for any two-
sided condition.
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to adopt a broad definition of efficiency
which includes equilibrium pricing
functions from well-posed models of
the wagering market.

2.3 Efficiency in Markets 
   with Heterogeneous Agents: 
   An Example

Wagering markets are fascinating in
part because cheering for competitors is
linked to loyalty, passion, and other “ir-
rational” concepts. These traits surely
affect the behavior of some market par-
ticipants. But since prices (odds and
point spreads in this context) are deter-
mined at the margin, it is not a given
that these traits will affect market
prices. It is the marginal agent, about
whom little is known from psychological
studies, that is crucial to pricing.

The following example illustrates
some important points related to mar-
ket efficiency, and is intended to pro-
vide a unifying basis for interpreting much
of the empirical work that follows.

A Horse Race with “Irrational” Bet-
ting. Consider a horse race contested by
three horses of equal ability but differ-
ent color. Index each horse by hi and
denote the probability that hi wins by
pi = 1 ⁄ 3, i = 1, 2, 3. Further assume that
each of N uninformed bettors wagers $1
on the horse of their favorite color.
Color preferences are distributed
evenly so that $N/3 is bet on each
horse. For simplicity, assume there is
no takeout so that all money bet is dis-
tributed to the winning bettors.

In this example, each bet is a fair one
since the expected return to a $1 bet on
hi is ERi = piN ⁄ (N ⁄ 3) = 1. Suppose an
economist using the constant returns
concept examines data generated by a
series of these races. The economist
would find this market to be efficient,9

despite the fact that the basis for deci-
sion making has nothing to do with the
outcome of the race.

Now change the scenario. Suppose
that in each race, horse k is randomly
chosen to be more likely to win. Specifi-
cally, let prob(hk = hi) = 1 ⁄ 3, i = 1, 2 , 3 ;
and pk = p = 2 ⁄ 3 , pj = 1 ⁄ 6, j ≠ k. The unin-
formed bettors place wagers as before.
The efficiency conclusion is the same if
the economist, like the bettors, does
not know which horse has been chosen
more likely to win.

Informed Betting and Efficiency.
Now introduce a single informed agent
with knowledge of the correct set of
probabilities and of the betting by oth-
ers, and assume his objective is to maxi-
mize the expected profit from betting.
Let si

u represent the subjective prob-
abilities (i.e. betting shares) of the
uninformed bettors. Rufus Isaacs
(1953) studied this problem and showed
that the optimal wager is always positive
when Qpi ⁄ si

u > 1, which is clearly the
case for hk.10 Denoting the amount wa-
gered on hk by x, expected profits are

EΠ = p 
(N + x)

(N ⁄ 3 + x)
 x − x

where p = 2 ⁄ 3 by assumption. In this
case, the expected profit maximizing wa-
ger is x∗ = N ⁄ 3. If the informed agent
bets optimally, the total amount wagered
is now 4N ⁄ 3, with 2N ⁄ 3 bet on hk and
N ⁄ 3 bet on each of the other horses. The
expected return to betting $1 on hk is
now ERk = (2 ⁄ 3)(4N ⁄ 3) ⁄ (2N ⁄ 3) = 4 ⁄ 3 >1.
Our economist will discover this eventu-
ally (hk is now always favored and thus
easily identified), and correctly pro-
nounce this market to be inefficient.

As the number of informed agents is
increased, the betting on hk increases
and expected returns to bets on all

9 Which it is, since there is no incentive to alter
choices.

10 See L.C. MacLean, W.T. Ziemba, and G.
Blazenko (1992 for an analysis incorporating risk
aversion).
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horses converge towards 1 again. Wil-
liam Hurley and Lawrence McDonough
(1995) derive the non-cooperative Nash
solution for the case of M ≥ 1 informed
agents. Since informed agents will only
consider betting on hk in this example,
the problem for informed agent m is to
maximize

EΠm = p
(N + Σx)
(N⁄3 + Σx)

xm − xm

where Σx represents the betting of all M
informed agents.

Solving this problem assuming in-
formed agents are identical yields a
solution for xm = x∗ = x∗(N, M, p, σk).11

Total betting by informed agents Mx∗ is
increasing in M. As a result, the ex-
pected return to betting hk, ERk =
 p(N + Mx∗) ⁄ (N ⁄ 3 + Mx∗) asymptotically
approaches 1.

Table 1 presents the optimal wager
x∗ and total wagering Mx∗ by informed
agents as M increases. The rightmost
columns of Table 1 present the ex-
pected return to betting hk and the ag-
gregate subjective probability of all
agents. The calculations are made for
the case described above, with N set to
100. This enables the wagering magni-
tudes to be interpreted as percentages
relative to the volume of uninformed

betting.
As indicated by the case in which

M = 1, the difference between 1 and ERi
can be substantial when the number of
informed agents is small.12  Neverthe-
less, it does not take many informed
agents to drive expected returns close
to 1. It is worth noting also that the
uninformed agents are treated some-
what implausibly in this example, since
it is profitable for them to switch their
bets from their preferred color to the
betting favorite. Such behavior in-
creases the tendency for expected re-
turns to converge to 1.

Discussion. This example illustrates
several points that are sometimes ob-
scured in the debate on financial mar-
ket efficiency. First, all agents need not
be informed for a market to be effi-
cient. In this example, a conclusion of
market efficiency is reached with either
zero (which is fortuitous) or a small
number of informed agents. Second, a
finding of efficiency does not imply the
absence of irrational behavior. By irra-
tional, I mean simply that some partici-
pants base their wagers on irrelevant
data, as in this example. This line of
thinking has important implications. An
example is how we interpret survey evi-
dence on expectations and behavior.
Survey evidence documenting biased
expectations does not necessarily imply
that market prices will be similarly
biased.

Third, it is the marginal agent that is
crucial to efficient pricing. Indeed,
once the information asymmetry is in-
troduced, competition among marginal
agents is required for efficiency. Repre-
sentative agent models in which all bet-
tors have access to identical public in-
formation are quite restrictive, and will

11 The solution for xm proceeds as before, using
∂xj

 ⁄ ∂xm = 0, j = 1, 2, ..., M.
The resulting quadratic equation 

x2 + x(2N ⁄ 3)


1
M

 − 
(M − 1)

M2  ⋅ 
p

1 − p



 

             + 
(N ⁄ 3)2

M2  − 
p

1 − p
 ⋅ 

2N2 ⁄ 9
M2  = 0

yields the solution x∗(N, M, p, sk) :

x∗ = (N ⁄ 3)

(M − 1)z − 

1
M




 + 

1
2M

 √(4N2 ⁄ 9)




1 

M
 − z(M − 1)





2

 − 4 




N2 ⁄ 9
M2  − z(N ⁄ 3)(2N ⁄ 3)





 

where z = p ⁄ (1 − p)M2.

12 This requires of course that there be a sub-
stantial difference between the true probabilities
and subjective probabilities of the uninformed
agents, as in this example.

 Sauer: Economics of Wagering Markets 2027



be rejected when private information is
important and limited to small groups.
Horse race betting is just such a case.
Many results in this literature which de-
part from the constant expected returns
standard are related to these factors.

Finally, it is well known but worth re-
iterating that efficiency is not a stand-
alone concept. Efficient prices embody
properties that are implied by a given
model, and are therefore dependent on
the behavioral assertions, constraints,
and information structure that charac-
terize the model. Hence, the source of
error when efficiency is rejected is by
no means immediately obvious. My own
view is that the generic efficient mar-
kets hypothesis is a very useful bench-
mark. Its generality is at once a great
strength, since it can be widely applied,
and a great weakness, since it will be
rejected in settings where idiosyncratic
conditions are important. But rejections
of efficiency don’t just highlight limita-
tions of the basic model; they must be

studied carefully, for it is these cases
which add the most to our under-
standing of the forces that create mar-
ket prices.

3. Models of Gambling Behavior 
and Gambling Markets

3.1 Utility-of-Wealth Models 
   of Gambling

Models of gambling based on ex-
pected utility date back to Daniel
Bernoulli’s famous solution to the St.
Petersburg paradox. Bernoulli posited
that individuals value a gamble using a
probability-weighted utility function
instead of the standard mathematical
expectation (see Kenneth Arrow 1952,
pp. 420–21; and Mark Machina 1987, p.
122–23).13  Since the solution requires

TABLE 1
INFORMED AGENTS, OPTIMAL WAGER SIZE AND EXPECTED RETURNS

Number of Informed Optimal Wager Total Informed Expected Return Probability Subjective

M x* Mx* pRk Rk
-1

 0 —  0.0 2.000 0.333
 1 33.3 33.3 1.333 0.500
 2 28.9 57.7 1.155 0.577
 3 23.3 69.9 1.097 0.608
 4 19.2 76.8 1.070 0.623
 5 16.2 81.1 1.055 0.632
 6 14.0 84.1 1.045 0.638
 7 12.3 86.3 1.038 0.642
 8 11.0 87.9 1.033 0.645
 9  9.9 89.2 1.029 0.648
10  9.0 90.3 1.026 0.650
15  6.2 93.4 1.017 0.655
20  4.8 95.1 1.013 0.658
25  3.8 96.0 1.010 0.660
50  2.0 98.0 1.005 0.663

Notes: The calculations assume pk = 2/3 and sk = 1/3. N is set to 100 so that the wagers listed can be interpreted as
percentages relative to the size of the uninformed betting pool.

13 Arrow (1952) provides a particularly compre-
hensive discussion of axiomatic foundations for
and methodological objections to expected utility
theory. Machina (1987) provides a helpful intro-
duction to non-expected utility models, in which
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marginal utility to be decreasing in
wealth, it is incapable of explaining the
acceptance of fair gambles.14  That peo-
ple accept some fair (and unfair) gam-
bles implies that either they obtain
pleasure from gambling or that mar-
ginal utility is not universally declining.

The classic paper of Milton Friedman
and Leonard Savage (1948) assumes the
latter. The Friedman–Savage explana-
tion is based on the assumption of a
convex (increasing marginal utility) seg-
ment in the middle range of an other-
wise concave utility function. Hence,
individuals in the first concave segment
are predicted to purchase low prob-
ability, high payoff gambles that reach
well into the convex segment, while si-
multaneously insuring against wealth-
decreasing risks. The concave segment
at higher levels of wealth limits the
gains from gambling and hence the size
of the prize for which people are willing
to gamble. Several facts about lotter-
ies—that prizes are typically not “win-
ner take all” but multiple in nature, and
that poor people tend to play the lottery
and rich ones do not—are consistent
with Friedman and Savage.15 

Jack Hirshleifer (1966) pointed out a
critical flaw in this approach. While the
purchase of low probability, high payoff
gambles by the poor fits the data, the

application to middle-income individu-
als implies that they are “plungers of an
extreme sort.”16  Strictly taken, the
model implies that middle-income indi-
viduals would gamble their way into
either the poor or rich sections of the
income distribution.

The approach of Harry Markowitz
(1952) avoids this pitfall. The Mark-
owitz model places the convex segment
of utility at current wealth, and thereby
treats gambling as exploitation of local
risk preference. The local nature of this
model has the advantage of allowing all
segments of the income distribution to
make rational gambles. Nevertheless,
like Friedman and Savage, Markowitz
relies exclusively on the curvature of a
utility of wealth function to explain
gambling behavior.17  

3.2 Local Risk Preference 
   in a Representative Agent Model 
   of the Betting Market

Early models of racetrack betting—
notably Martin Weitzman (1965),
Mukhtar Ali (1977), and Quandt (1986)
—employ the local risk preference as-
sumption. Weitzman’s model is the first
in which prices observed in the betting
market are given a coherent equilib-
rium interpretation. Weitzman’s data
are a sample of over 12,000 races run at

the objective function is non-linear in the prob-
abilities. These latter models have not been
adapted to empirical studies of gambling, with the
exception of John Conlisk (1993), discussed below.

14 Declining marginal utility implies that the
utility of current wealth exceeds the expected util-
ity of any fair gamble. Hence, it can explain why
people are unwilling to pay more than a small
amount for a gamble with infinite expected value,
i.e., the St. Petersburg game. This game tosses a
fair coin n times and pays the gambler 2n dollars,
where n is the first time a head appears.

15 The data unequivocally show that the percent
of income allocated to lottery games declines
sharply with income. Actual expenditure on lotter-
ies varies in diverse ways across income and socio-
economic classes. See Charles Clotfelter and Phil-
lip Cook (1991, pp.95–104).

16 For individuals in the middle range, the ex-
pected utility of a small gamble spanning a tiny
segment of wealth will be dominated by that of a
large gamble which reaches far into the convex
segment of the utility function. These individuals
are thus predicted to make much larger gambles
(of higher probability) than those with lower
wealth.

17 Positing a wiggle in an otherwise smoothly de-
clining marginal utility function strikes many as
being equally ad hoc as positing a taste for gam-
bling. Of course there are ways to generate such
functions. Applebaum and Katz (1981) create a
Friedman–Savage function based on an asset mar-
ket argument, in which low wealth is a barrier to
earning a high rate of return. An increasing rate of
return in the middle range of wealth generates
convexity in a utility function which is concave in
the lower and upper wealth regions.
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New York tracks over a 10–year period.
Let Ri be the return per $ conditional
on winning and p̂i the sample estimate
of the probability of winning associated
with that return. Weitzman found that a
rectangular hyperbola and a modified
hyperbolic form estimated by weighted
least squares achieved a remarkably
good fit to the (Ri, p̂i)  pairs (R2 ex-
ceeded .98 in both cases). The latter
function was consistent with local risk
preference.18  

Weitzman’s model of the wagering
market posits a representative agent,
Mr. Avmart, who maximizes expected
utility given a local preference for risk.
Assume that Avmart bets $b and let
mi = Ri ∗ b. The points (mi, p̂i)  on the
hyperbolic curve represent an equilib-
rium relation between money prizes
and the probability of winning them,
and the representative agent is neces-
sarily indifferent between points on this
curve. Were Avmart not indifferent to
points on this curve, more betting
would take place on preferred combina-
tions reducing their return (and raising
others) until the agent was indifferent
between the resulting combinations.
The resulting curve then would be what
we observe. Similarly, given a momen-
tary deviation of an (m, p̂) combination
off the curve, “Avmarts will line up at
the ticket window to drive the prob-
ability versus return curve back to the
proper shape (Weitzman 1965, p. 24).”
Weitzman and Ali (1977) employ the
observed relation between probability and
return to recover the (local) shape of the
representative agent’s utility function.

Quandt (1986) took the argument one
step further. Weitzman’s data, along
with other data before and since, exhib-
ited a phenomenon now referred to as
“the favorite-long shot bias.”19  In short,
this bias exists when the expected
return to betting favorites exceeds that
of betting long shots. Quandt showed
that, assuming local risk preference in
utility, a necessary condition for equi-
librium in the wagering market is that
favorites yield higher expected returns
than long shots.

The favorite-long shot bias can be
characterized by the condition pi ⁄ wi >
 pj ⁄ wj when wi > wj. Assume that agents
know the true probabilities, and recall
that pi = wi, i = 1, …, n, implies ERi = Q
for each horse. Let pi = wi hold for every
horse. This cannot be an equilibrium if
Avmart exhibits local risk preference.
Since the longest shot is the riskiest (a
preferred attribute) and its expected
return is the same as all other horses,
Avmart would prefer to bet on the
longest shot when pi = wi for all horses.
This activity increases wi for long shots
and reduces it for others. Quandt shows
that pi ⁄ wi > pj ⁄ wj implies pi > pj when
Avmart exhibits local risk preference;
that is, higher expected returns accrue
to higher probability horses.

These papers represent the high-
water mark of the representative agent
model of racetrack betting. They show
how aggregate returns in the betting
market can be viewed as an equilibrium
outcome of optimizing trades by a
representative agent with local risk
preference. Subsequent empirical work
reveals the limitations of this model,
however. First, not all markets exhibit
the favorite-long shot bias. Second,
there is substantial evidence of differ-
ential returns earned by informed

18 The rectangular hyperbola ρ = A/R of course
generates a constant expected return of A when
subjective probabilities equal their empirical
counterparts. Weitzman’s estimate of A was .8545,
trivially higher than Q (.85) at New York tracks
during this period. Although the modified hyper-
bolic form fit the data better, Weitzman notes that
constant expected returns “is a good first-order ap-
proximation” to the data.

19 These empirical studies and other attempts at
explaining this phenomenon are discussed in Sec-
tion 4.
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market participants. These findings, dis-
cussed in Section 4, indicate that there
is more to racetrack betting than is cap-
tured by this model. To fully under-
stand these features requires more so-
phisticated modeling of the behavior of
various market participants.

3.3 Critiques and Alternatives to Utility-
   of-Wealth Models of Gambling

Paul Samuelson (1952), Hirshleifer
(1966), and others have argued that
gambling is not wealth-oriented in the
Friedman–Savage sense.20  Hirshleifer’s
observation that most gambling involves
repetitious wagers with small stakes
illustrates the point. Most bets that
people make (say $10 to win on a horse
at odds of 3–1) are simply incapable of
generating wealth changes of any conse-
quence. But if gambling is motivated by
something other than convex utility,
what alternatives can shed light on the
economics of gambling markets?

Richard Thaler and William Ziemba
(1988) argue that behavioral proposi-
tions such as mental accounting and
prospect theory are consistent with
some empirical features of wagering
markets. This is true, and future papers
on wagering markets will certainly be
motivated by the behavioral approach.
The potential lack of generality in this
approach is troublesome however. One
can think of numerous stories to explain
things not predicted by an economic
model, perhaps one or more stories for
every anomaly. Extensions of the basic
economic model may ultimately be a
more productive line of inquiry.

One promising extension is the model

of John Conlisk (1993), which focuses
on the pleasures of gambling.21  In do-
ing so, he is forced to confront the no-
tion that a direct “association of utilities
with gambles can lead to a theory . . .
without scientific content,” an issue of
obvious importance. Conlisk appends
what he calls “a tiny utility of gambling”
to an otherwise standard expected util-
ity model. He considers fair gambles in
which amount G is won with probability
p, and amount L is lost with probability
1–p. Fairness implies that a given gam-
ble can be summarized by the pair
(G, p), where pG = (1 − p)L.

Gambles are assumed to add to utility
in the following way. Let U(W) repre-
sent a standard utility of wealth func-
tion, which is bounded and exhibits de-
creasing absolute risk aversion. The
preference function is

E(G, p, W) = pU(W + G)
 + (1 − p)U[W − pG ⁄ (1 − p)] + εV(G, p)

which is an expected utility function
augmented with an additional utility of
gambling, εV(G, p), where ε is a non-
negative scale parameter. V(G, p) has
the properties V(0, p) = 0, V1(G, p) > 0,
V11(G, p) < 0,  V(G, 0) = 0,  and V2(G, p) > 0
for G > 0.

These restrictions on the taste for
gambling enable Conlisk to derive test-
able implications from the model. As-
suming that ε is sufficiently small, he
shows that (1) there is a limit to the size
of an acceptable gambling prospect; i.e.
there is a sense in which small gambles
are preferred to large ones; (2) there is
a uniquely preferred gamble size; and
(3) both of these magnitudes increase

20 In discussing the issue, Samuelson (1952, p.
671) writes “Warning: what constitutes a prize is a
tricky concept. When I go to a casino, I go not
alone for the dollar prizes but also for the pleas-
ures of gaming—for the soft lights and the sweet
music. In such cases the X’s (prizes) should be
complicated vectors embodying all these ele-
ments.”

21 Vernon Smith (1971) also tinkered with an ex-
pected utility model modified to include a direct
utility of gambling. Smith’s primary focus, how-
ever, was on how different payoff structures (odds
vs. point spreads) affected expected utility in the
absence of a taste for gambling. This topic is taken
up in Section 3.4.
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with wealth.22  In particular, the model
satisfies one essential requirement of
Friedman and Savage—it predicts the ac-
ceptance of small gambles and the pur-
chase of insurance when risks are large.
Intuitively, the basis for these implica-
tions is that for small gambles, the util-
ity-of-gambling effect is first-order small,
whereas the risk aversion effect is sec-
ond-order small. Finally, note that indi-
viduals of various wealth levels will accept
fair gambles in this framework, an impli-
cation consistent with Markowitz’ normali-
zation of the convex segment of utility.

On the empirical side, Conlisk makes
the case that experimental evidence of
“excess risk-seeking” in prior studies is
consistent with the implications of his
model of gambling. Nevertheless, in its
current form, the restrictions required
for empirical testing are not present. In
effect, with the curvature properties of
two additive functions loosely specified, the
variety of admissible choices is too ex-
tensive. Conlisk (p. 262) reports, however,
that Alexander Pollatsek and Amos Tver-
sky (1970) “present an axiomatic devel-
opment that, specialized to the prospect
(G, p)” can yield a specific functional
form for V(G, p). Restrictions on V(G, p)
would give the model additional punch.

Conlisk’s model represents a significant
advance over the ad hoc specifications of
convexity in earlier models. Although addi-
tional elements are required for an em-
pirically tractable model of the wagering
market, this is a serious treatment of the
motivation for gambling and its implica-
tions, and deserves further exploration.

3.4 The Structure of Gambling Markets:
   Why Is There No Odds Market 
   for Football Games?

Why do Las Vegas bookmakers offer
point spread betting at fixed odds of

10–11, but choose not to make an odds
market on the winner of the game? The
layman’s answer is that the point spread
wager is more exciting, particularly
when a lopsided contest is scheduled.
Gilbert Bassett, Jr. (1981) provides an
elegant alternative explanation in which
bettors have no innate preference for
one type of wager over the other. Bet-
tors are assumed to wager an amount
which is a nondecreasing function of
their perceived expected return. The
bookmaker is assumed to set odds or
spread such that a profit is realized in-
dependent of the game’s outcome. To
make a market in this setting obviously
requires that bettors have disparate
probability beliefs. These beliefs are
modeled by distributions over the point
difference which differ only by a loca-
tion parameter.

The critical element in the Bassett
model is the bookmaker’s takeout. All
bettors are charged a fixed fee, which,
coupled with the odds, generates the
price of a contingent claim to $1. In the
absence of this fee, betting volume is
the same in each betting game. With a
positive fee, point spreads generate
more betting when the distribution of
point differences is symmetric and uni-
modal. The bookmaker’s takeout drives
a wedge between the two sides of the
market. In Bassett’s model this wedge is
minimized when the odds are equal-
ized, as in the point spread game.

The model of Bill Woodland and
Linda Woodland (1991) emphasizes the
role of risk aversion in determining the
preferred betting game. Woodland and
Woodland identify two problems with
the Bassett model. First, the fixed take-
out assumed by Bassett raises the price
of a contingent claim for the long odds
bettor by a much greater percentage
than the short odds bettor. This effect
can be very pronounced at long odds,
for example, when the fee is 5 cents and

22 If ε exceeds a critical level, then every fair
prospect will be accepted.
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the price of obtaining $1 by betting on
the long shot is, say, 10 cents or less.
Second, Woodland and Woodland are
skeptical of the implication in Bassett
that odds betting on football games
would be just as likely to be observed as
point spread betting in the absence of
takeout. Something other than takeout (or
perhaps in addition to it) may be at work.

Woodland and Woodland show that
the optimal wager size of a risk-averse,
U(W) maximizing individual is greater
when the odds are close to even, as in
the point spread game, than when they
are disparate, as in betting on the win-
ner.23  Their model’s assumption of risk-
averse, utility of wealth maximizing
agents provides the basis for arguing
that spread betting will be preferred to
odds at equilibrium values. Further,
they argue that the standard assumption
of local risk preference is inconsistent
with point spread betting: since odds
betting on the winner is inherently risk-
ier, local risk preference would imply
that betting on the winner dominates
betting against the spread. This is a use-
ful observation, but it does not imply
that concavity in U(W) is the culprit in
driving out an odds market for football
games.

While these are interesting models,
neither has solved the riddle. There
may be better attacks on the question
than comparisons of wagering volume,
since the odds market in football prob-
ably fails for reasons that are indepen-
dent of the success of point spreads.
Note that several forms of wagering are
offered on all of the sports discussed in
this paper. Thus, the existence of one

form of wagering does not preclude the
existence of another form. Consider
also the bookmaking market on horse
races in the U.K. In lopsided races with
an extreme favorite, many bookmakers
do not offer odds against the favorite,
while simultaneously offering odds
against the long shot horses in various
forms. This suggests that it is not profit-
able to make a market on extreme favor-
ites, in contrast to the long shots. This
situation parallels that of a heavy favor-
ite in a noncompetitive football game. If
there is a solid economic (as opposed to
a taste-based) explanation for the domi-
nance of point spreads over odds, this
explanation should explain why book-
makers make a market on long shots but
not heavy favorites in lopsided races.

4. Empirical Analyses
of Racetrack Betting

4.1 The Betting Market 
   and the Probability 
   of Winning a Race

Psychologists Richard Griffith (1949)
and McGlothlin (1956) were the first to
use the racetrack betting market as a
vehicle for studying behavior under un-
certainty. These studies used the win
pool shares, wi = Wi ⁄ W, to evaluate the
ability of market participants to discern
small differences in the probabilities of
outcomes.

Consider an n horse race, where
pi, (i = 1 , 2, ..., n) is the probability that
horse i wins. The net share of the win
pool after takeout is given by

πi = Wi ⁄ QW = wi ⁄ Q = Ri
−1 (1′)

which is the inverse of equation (1). πi

can be viewed as the price of obtaining a
claim to $1 in the event that horse i wins
the race. As before, Ri is the gross return
to $1 bet on horse i, and the odds
Oi = Ri − 1 measure the net return.

Griffith (1949) grouped horses from

23 It is assumed that the perceived net return
from the wager is positive. Of course this cannot
be true in the aggregate, so this model fails to
satisfy basic notions of rationality. Woodland and
Woodland do not address the question of why in-
dividuals with their assumed objective would per-
sist in this activity when takeout assures that on
average they lose money.
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1386 races into 11 categories according
to their odds. Horses with Oi ≤ 1 com-
prised the lowest-odds group, and
horses with Oi > 15 comprised the long-
est odds group. Let Hk be the number
of horses in class k, and Nk be the num-
ber of winning horses in this group. The
expected number of winners in group k
is Nk

e = pkHk. Griffith compares Hk with
Nk ⁄ wk for a sample of 1386 races.
Clearly, Hk ≈ Nk ⁄ wk only to the extent
that wk ≈ pk. Griffith (pp. 292–93) finds
the “near congruence of” Nk ⁄ wk and Hk

“remarkable.” This congruence implies
that wk ≈ pk, which justifies the use of
win pool shares as estimates of subjec-
tive probability.

Arthur Hoerl and Herbert Fallin’s
(1974) study of the win pool is espe-
cially clear on this point. Hoerl and
Fallin categorized races by the number
of contestants, which ranged from 5 to
12 horses. They ranked horses within
each race by their track odds, and com-
pared the average subjective probability
with the observed proportion of victo-
ries for each ranking. These compari-
sons are presented in Table 2. The sub-
jective and objective probabilities move
together quite closely; both decline in
lock-step fashion as one moves from the
highest ranked to the lowest ranked
horse in a race. Table 3 presents Hoerl
and Fallin’s calculation of the average
finishing position for the horses in these
races. This number declines monotoni-
cally with the rank of the horse in all
eight race categories. Like Griffith,
Hoerl and Fallin (1974, p. 230) con-
cluded that the betting market “demon-
strates that individuals with incentive
can on the average successfully dis-
criminate small differences” in the like-
lihood of outcomes.

4.2 The Favorite–Long Shot Bias

Evidence. But Griffith also found that
for horses with the lowest odds (favor-

ites), Nk ⁄ wk was slightly higher than Hk,
implying that wk < pk for these classes.
For horses with higher odds (long
shots), Griffith observed the opposite,
implying that wk > pk in this range.
Hence, the win pool shares were lower
than win frequencies for favorites, and
slightly higher than win frequencies
for long shots. This tendency is also
clear in Hoerl and Fallin’s data, which
can be discerned by looking carefully at
the most and least favored horses in
Table 2.24 

McGlothlin (1956) framed the ques-
tion in terms of expected returns, and
carried out parametric statistical tests.
McGlothlin classified horses from his
sample of 9248 races into nine groups
according to the odds of each horse. In
the absence of takeout, the expected
profit of a $1 wager on horses in group
k is Ek = pk ⁄ wk − 1.25  McGlothlin used
the ratio Nk ⁄ Hk to measure pk, and cal-
culated wk using the published odds of
each horse.

The benchmark value of Ek is zero,
which is realized when pk=wk. McGloth-
lin calculated Ek to be .08 for the two
groups of horses with the lowest odds
(3–1 and less), and Ek to be roughly -.10
for the three groups of horses with the
highest odds (8–1 and higher). These
figures were 2–4 times their standard
errors. Thus, expected returns on favor-
ites exceeded those of long shots in
McGlothlin’s sample of races, a finding
which has been repeated in many sam-
ples since.

Wayne Snyder (1978) surveyed six

24 Although the departures from equality are
small, the ordering of the differences between ob-
jective and subjective probabilities in the tails is
systematic. Statistical tests on the differences as a
group provided no evidence against the null hy-
pothesis, although Hoerl and Fallin noted the ten-
dency to over-predict in the right tail.

25 Since Q < 1 , the true expected profit of a $1
wager is Ek′ = pk

 ⁄ πk − 1. Note that Ek′ − Ek = τ
when pk = wk, so McGlothlin’s Ek is essentially a
normalization of Ek′ to 0.
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studies (including Griffith, McGlothlin,
and Weitzman) encompassing 50,000
races in North America, each docu-
menting the favorite-long shot bias.

Snyder aggregated the rates of return
for various odds categories, with the
takeout added back, as in McGlothlin.
The pre-takeout rate of return varies

TABLE 2
COMPARISON OF SUBJECTIVE PROBABILITIES AND ACTUAL WINNING FREQUENCIES

BY ODDS RANK OF HORSE

No. of No. of
Odds Rank of Horse

Entries Races 1 2 3 4 5 6 7 8 9 10 11 12

 5  69 Subj. prob. .42 .25 .17 .11 .06
Obs. freq.∗ .41 .30 .20 .07 .03

 6 181 Subj. prob. .36 .23 .17 .12 .08 .04
Obs. freq. .43 .21 .20 .11 .03 .02

 7 312 Subj. prob. .33 .22 .16 .12 .09 .06 .03
Obs. freq. .34 .21 .16 .12 .08 .08 .02

 8 352 Subj. prob. .31 .20 .15 .12 .09 .06 .04 .03
Obs. freq. .33 .25 .13 .09 .07 .06 .04 .02

 9 283 Subj. prob. .30 .20 .05 .11 .09 .06 .05 .03 .02
Obs. freq. .35 .15 .17 .13 .08 .06 .02 .01 .02

10 241 Subj. prob. .29 .19 .14 .11 .08 .06 .05 .03 .02 .02
Obs. freq. .31 .17 .16 .10 .07 .07 .06 .04 .02 .01

11 154 Subj. prob. .27 .18 .14 .11 .08 .07 .05 .04 .03 .02 .01
Obs. freq. .27 .18 .19 .08 .05 .05 .05 .05 .04 .04 .01

12 233 Subj. prob. .26 .17 .13 .10 .08 .07 .05 .04 .03 .02 .02 .01
Obs. freq. .28 .14 .17 .12 .10 .06 .02 .05 .03 .03 .01 .00

Source: Hoerl and Fallin (1974); data are from all 1,825 races run at Aqueduct and Belmont Park (NY) in 1970.
∗ Observed frequency.

TABLE 3
MEAN ORDER OF FINISH BY ODDS RANK OF HORSE

No. of No. of
Odds Rank of Horse

Entries Races 1 2 3 4 5 6 7 8 9 10 11 12

 5  69 2.1 2.4 2.9 3.4 4.1
 6 181 2.2 2.9 3.2 3.6 4.2 4.9
 7 312 2.8 3.2 3.7 4.0 4.3 4.6 5.4
 8 352 2.8 3.2 3.9 4.2 4.7 5.1 5.7 6.4
 9 283 3.1 3.6 4.1 4.6 5.1 5.3 6.0 6.4 7.1
10 241 3.1 4.0 4.3 5.1 5.3 5.6 6.2 6.5 7.0 7.9
11 154 3.8 4.0 4.7 5.2 5.7 5.8 6.3 6.9 7.2 7.8 8.5
12 233 3.9 4.6 5.1 5.4 6.0 6.2 6.7 7.2 7.6 7.7 8.7 9.1

Source: Hoerl and Fallin (1974); data are from all 1,825 races run at Aqueduct and Belmont Park (NY) in 1970.
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from 9.1 percent for odds-on horses
(Oi < 1), to –23.7 percent for horses with
the highest odds (33–1 and up).

Jack Dowie (1976) found the same
pattern of returns in the British book-
making market, hence this finding is not
unique to pari-mutuel markets. Indeed,
the bias is more pronounced in Dowie’s
data, which encompass all 2,777 races
run in Britain during 1973. Figure 1
displays the rates of return from Snyder
(1978) and a similar construction using
Dowie’s data. The returns to extreme
long shots are markedly lower in the
U.K. market. In addition, the returns to
low odds horses present a puzzle.
Breaking down the data more finely,
Dowie’s figures indicate that book-
makers lost money when taking bets on
extreme favorites, horses with Oi ≤ 0.5.
There were 107 such horses, with a be-

fore-tax rate of return of .085 at final
odds, which is roughly the bookmaker’s
loss for these bets.26  

Ali (1977) analyzed betting in a sam-
ple of 20,247 harness races in a fash-
ion similar to Hoerl and Fallin. In con-
trast to Hoerl and Fallin’s data, Ali’s
data were strongly inconsistent with
the null hypothesis that subjective and
objective probabilities were equal.
Table 4 contains estimates of objective

26 An explanation consistent with evidence in
Section 4.4 is that these horses were bet heavily
and their odds were reduced during the betting
cycle. (Note that this implies the bookies’ losses
were even greater than 8.5% for these horses).
Offsetting these losses, perhaps, are profits for
bookmakers on horses who were thought to be
heavy favorites but whose odds drifted out in the
betting. In both cases, incomplete adjustment of
the odds occurs during the market period, result-
ing in improved but imperfect estimates of the
probability of winning.
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Figure 1.  The Favorite-Longshot Bias in the U.S. Pari-mutuel (Snyder) and U.K. Bookmaking (Dowie) Markets
Note:  Snyder’s are pari-mutuel returns with the takeout added back; hence the norm is zero. Dowie’s are pre-tax returns 
at SP odds. Hence the norm for Dowie is less than zero to account for the costs of bookmaking.
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probabilities, and the differences be-
tween subjective and estimated objec-
tive prob-abilities, wk − p̂k,  for three
studies: Ali (1977); Peter Asch, Burton
Malkiel and Richard Quandt (1982); and
Kelly Busche and Christopher Hall
(1988). Ali’s findings are in the first two
columns of Table 4, where the bias is
clearly evident.27  Asch, Malkiel and
Quandt (1982) found the same pattern
in betting data from Atlantic City’s race
course.

The data from Hong Kong are differ-
ent. Busche and Hall (1988) analyzed a
sample of 2,653 races run in Hong Kong

between 1981 and 1986. They found no
evidence of biased returns in the Hong
Kong pari-mutuel market. wk − p̂k is
negative (–.035 and –.036) for the top
ranked horse in the North American
studies, indicating the favorite was rela-
tively underbet.28  In Hong Kong, this
difference is positive. Whereas the sub-
jective probability exceeds the objective
by about .01 for North American long
shots, there is no pattern in the Hong
Kong long shots.

A Psychological Explanation. There
are several potential reasons for the ex-
istence of the favorite-long shot bias.
An obvious explanation is that bettors
may underestimate the chances of

TABLE 4
THE DIFFERENCE BETWEEN SUBJECTIVE AND OBJECTIVE PROBABILITIES IN THREE SAMPLES

Ali (1977) Asch, Malkiel, & Quandt (1982) Busche & Hall (1988)

Rank p̂k wk − p̂k p̂k wk − p̂k p̂k wk − p̂k

 1 0.358 –0.035 0.361 –0.036 0.276  0.008
 2 0.205  0.003 0.218 –0.013 0.190 –0.003
 3 0.153 –0.001 0.170 –0.025 0.151 –0.009
 4 0.105  0.007 0.115 –0.011 0.099  0.012
 5 0.076  0.006 0.071  0.001 0.084  0.003
 6 0.055  0.005 0.050 –0.002 0.063  0.003
 7 0.034  0.008 0.030  0.004 0.048  0.001
 8 0.021  0.007 0.017  0.008 0.047 –0.010
 9 0.006  0.012 0.034 –0.006
10 0.021  0.000
11 0.023 –0.005
12 0.014 –0.001
13 0.010  0.001
14 0.013 –0.005

Notes: The probabilities need not sum to one because different numbers of horses participated in each race. p̂k is
the estimated objective probability for horses in each group, and wk − p̂k is the difference between the subjective
and objective probabilities. A positive value for wk − p̂k indicates that horses in this group were overbet relative to a
standard in which expected returns were equal across all classes of horses. The original sources reported tests of
statistical significance for the variate wk − p̂k. For the samples of Ali and Asch, Malkiel and Quandt, favorites (rank
1) were significantly underbet and extreme longshots were significantly underbet; there is no such pattern in the
Busche and Hall data. Ali’s sample is from 20,247 harness races run at 3 New York tracks from 1970–74. Asch,
Malkiel, and Quandt’s sample is from 729 races run at Atlantic City during the 1978 season. Busche and Hall’s
sample is from 2,653 races in Hong Kong from 1981 to 1986.

27 The t-ratios reported by Ali testing the hy-
pothesis that wk = p̂k, are –10.3 for the favorite,
insignificant for the second and third ranked
horses, and above 3.0 for the 4th–8th ranked
horses.

28 It was also statistically significant, about 10
times its standard error mean in Ali, and twice as
large in Asch, Malkiel, and Quandt.
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favorites and overestimate those of the
long shots. A common bias reported in
the psychological literature is that peo-
ple systematically overestimate the
probabilities of small probability events.
In laboratory experiments, subjects
asked to estimate the probability of
death from hazardous events underesti-
mate common hazards, like a heart at-
tack, and overestimate unlikely hazards,
like being struck by lightning (Paul
Slovic, Baruch Fischoff, and Sarah
Lichtenstein 1982). Griffith viewed his
findings on pari-mutuel betting as evi-
dence that the biases found in surveys
and experiments had a real-world coun-
terpart in the favorite–long shot bias.

The favorite–long shot bias may thus
be another manifestation of such mis-
perceptions. But this argument is not
persuasive. The questions asked in
these experiments tend to be one-shot
in nature. Other experiments, for exam-
ple Gerald Dwyer et al. (1993), show
that probability estimates made by indi-
viduals improve markedly as they ac-
quire more experience with their envi-
ronment. Similarly, biases reported by
survey respondents are smaller in envi-
ronments with repeated exposure to
risk (W. Kip Viscusi and Charles O’Con-
nor 1984).29  The racetrack itself is a
highly repetitious environment. Hence,
it seems presumptuous to assign the
cause of the favorite–long shot bias to
systematic misperceptions.30  

Variations in Local Risk Preference.
As discussed above, Weitzman, Ali, and
Quandt viewed the favorite–long shot
bias as evidence of local risk preference
in utility. The Hong Kong evidence
shows that the bias is not universal,
which casts doubt on the generality of
this explanation. Ali (1977) estimated
the degree of local risk preference ex-
hibited by the representative agent and
found that it varied in two important
ways. First, the implied preference for
risk was greater in the small market
track than in the large market.31  If one
assumes there is a fixed cost of arbi-
trage, this result can be explained by
the model in Section 2.3. The larger is
the pool (N), the number of informed
bettors who can cover their fixed costs
by betting (n) increases. As can be seen
in Table 1, increasing n causes the bias
wk − pk to shrink towards zero.

Second, Ali found that bettors exhibit
greater risk preference in the last race
of the day relative to earlier races. The
last race offers a chance for losing bet-
tors to “get out”; i.e. to recoup their
losses with a final wager. Low prob-
ability/high odds horses provide that op-
portunity, and are thus over bet relative
to a constant expected returns standard.
Thaler and Ziemba (1988) interpret this
as evidence of “mental accounting.” Al-
though one can speculate on rational
reasons why bettors might want to avoid
going home losers, this piece of Ali’s
evidence is certainly inconsistent with
the standard economic framework.

Heterogeneous Bettors in Pari-mutuel
Markets. Models with heterogeneous
agents have been shown to yield out-
comes consistent with observed returns
in several dimensions. Hurley and
McDonough’s (1995) model provides a
concise explanation of the bias. Suppose

29 One hypothesis is that survey respondents
overreact to newly identified risks, but adjust
these expectations with more experience. A new
hypothesis explored in Daniel Benjamin and Wil-
liam Dougan (1997) is that subgroups of the popu-
lation report estimates specific to their own co-
hort. Correcting for cohort effects, the reported
biases in the original experiments lose much of
their significance.

30 Note, however, that one psychological expla-
nation for gambling is that those who persist in the
activity in the face of unfavorable odds (and
mounting losses) exhibit biased evaluation of out-
comes (Thomas Gilovich, 1983).

31 The parameter characterizing risk preference
was .17 at the small market track and .06 at the
large market track.
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there are two groups of people betting
on a two-horse race, with pF > .5 for one
of the two horses. The uninformed
group bets equal amounts on each
horse. The other group is informed;
they know the true probabilities of win-
ning and maximize the expected profit
from betting. This setup is quite appeal-
ing in both its descriptive and analytical
simplicity; it captures the essence of the
racetrack market where a group of
knowledgeable bettors seeks to profit
on the action of a group that is poorly
informed. In the model with no takeout
rate and an unlimited number of in-
formed bettors, the market equilibrium
is perfect and win pool shares equal the
objective probabilities of winning.

When the number of informed bet-
tors is small, the influence of the unin-
formed remains in the odds in equilib-
rium. With an unlimited number of
informed bettors the bias emerges when
the takeout rate is positive. In this case,
the equilibrium win pool share for the
favorite is QpF. In this solution, in-
formed bettors never bet on the long
shot, and bets on the favorite take place
until the expected profits are reduced
to zero.32 

Hurley and McDonough (1996b) also
explore a model in which all bettors are
boundedly rational. Here, bettors’ prob-
ability estimates are drawn from an ar-
bitrary distribution centered on the true
probabilities. The simplest version is a
two-horse race with zero takeout. Each
bettor assumes that the current odds
will prevail in the end, and wagers a
fixed amount on the horse with the

greatest expected value. Hurley and
McDonough show that the betting un-
der these assumptions yields odds
which converge to a unique equilib-
rium. The equilibrium win pool share of
the favorite, wF

∗ , solves the equation
wF + G(wF) = 1, where G(wF) is the distri-
bution function of the bettors prob-
ability beliefs. Let pF > .5 be a solution.
Since G(pF) = .5 by assumption, pF +
 G(pF) > 1; hence only solutions where
wF

∗  < pF are possible when pF > .5.33  
The setup of this model has its ap-

peal, but its implications are not so
pleasant. First, in the absence of take-
out there is a profit opportunity at equi-
librium odds. Second, the favorite–long
shot bias diminishes and ultimately
reverses as takeout is increased. This is
the opposite result of the earlier model.
In sum, the models explored by Hurley
and McDonough are useful and impor-
tant attempts to capture what is empiri-
cally observed at North American race-
tracks. But more work of this sort is
needed to get the magnitudes right.

Information Asymmetry in the Book-
making Market. Hyun Song Shin (1991,
1992) modeled the bookmaking market
with an emphasis on the information
asymmetry between the bookmaker and
the bettor. There is always a chance
that the bettor knows a great deal more
about the outcome of the race than the
bookmaker. Shin’s papers show that
asymmetric information creates a favor-
ite-long shot bias through an optimal
pricing response by the bookmaker. Shin
(1992) analyzes the problem for an n-
horse race in a competitive equilibrium
environment, and is our focus here.

The model allows for two types of
bettors: a single insider, and a large
group of uninformed outsiders. The

32 Hurley and McDonough (1995) ran some ex-
periments with this model, which did not support
the implication that the takeout was responsible
for the bias. In experiments with and without take-
out, a bias of equal magnitude appeared in the two
situations. The number of bettors was small how-
ever (17 and 18). More extensive experiments of
this nature, in particular, experiments in which the
number of bettors varies, seem worthwhile.

33 For example, let probability beliefs be charac-
terized by the uniform distribution [.55,.75] with
pF = .65. Then G(wF) = (wF − .55) ⁄ .2, and
wF∗ = .625 < pF.
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bookmaker contracts with a single bet-
tor of unknown identity. The book-
maker knows two sets of probabilities:
the probability that the bettor is an in-
sider, and the ex ante probabilities of
each horse winning the race. The book-
maker sets prices with the knowledge that
there is a probability, z, that he will con-
tract with the insider, who has superior
knowledge of the outcome of the race.

The probability beliefs of the bettors
are extreme. The insider has been given
a window to the future, and knows the
outcome of the race with certainty. The
outsiders don’t know the outcome of
the race, but each believes with cer-
tainty that a particular horse will win.
Hence, both types will make a bet of
the maximum amount allowed on their
horse—let it be $1—regardless of the
prices offered by the bookmaker. The
outsiders are distributed in proportion
to each horse’s winning probability.
Thus, if pi = α, then α is the proportion
of outsiders that would bet on horse i.
While extreme, these assumptions en-
able a clear view of the problem and
yield an explicit solution.34  

The problem for the bookmaker is to
determine the expected profit-maximiz-
ing set of prices π:(π1, … πn) . Hence the
payoff when the bettor selects the win-
ner is 1 ⁄ πi.

The following considers the simplest
case where z is constant across all
horses. Conditional on the bettor being
an outsider, expected profits for the
bookmaker are V(π|outsider) = 1 − Σipi

2 ⁄ πi.
If the bettor is an insider, expected
profits are V(π|insider) = 1−Σipi ⁄ πi. Hence,
the expected profit function for the book-
maker is

V(π) = 1 − ∑ [
i

z pi + (1 − z)pi
2] ⁄ πi (3)

The bookmaker is assumed to operate
in a competitive environment and earn zero
profit. The simplest characterization of
optimizing prices thus restricts the sum
of prices to be the minimum sum with
nonnegative expected profit for the
bookmaker. Hence the objective is35 

min



π1 + … + πn|V(π1, … πn) ≥ 0





Letting Ai = √[zpi + (1 − z)pi
2] , the solu-

tion is given by

πi
∗ = Ai ⋅∑ As

s
(4)

Recall that πi is the price of a contingent
claim to $1 in the event horse i wins.
Hence the deviation in the sum of the
prices from 1, D = Σiπi

∗ − 1, can be
thought of as the market spread.

Using (4) and the definition of Ai it is
simple to show that πi = pi when z = 0
(there is no chance of an insider).
Prices equal probabilities, D = 0, and
there is no bias in the odds.

The favorite–long shot bias emerges
when z > 0.36  For example, consider a
2-horse race, where p1 = .25, p2 = .75, and
z is constant at .05. Using (4), we find
that π1

∗ = .2746 and π2
∗ = .7746, with D =

1.0492. The spread of 4.92 percent
amounts to compensation for losses im-
posed on the bookmaker when the in-
sider trades. The normalized prices
πi

∗ ⁄ D are .2617 and .7384, respectively.
The normalized prices (the bookmaking
market’s counterpart to wi) thus over-
state the probability that the long shot
wins, and understate the probability
that the favorite wins.

Shin (1993) explores a testable
implication of this model. Shin shows

34 Shin (1992) shows that a more general specifi-
cation of outsider expectations yields similar quali-
tative results, but without an explicit solution.

35 This is a modification of Shin’s setup which is
used to simplify the discussion.

36 The market is feasible only if z is “small,”
since large values of z result in strictly negative
profits for all sets of the bookmakers prices. The
model thus suggests a motive for restricting in-
sider trading, since a market may not exist when z
is large.
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that the market spread can be approxi-
mated by the linear regression D = z(n − 1)
+ h(p). The main focus is on the coeffi-
cient of the (n-1) term.37  The estimated
coefficient measures z, which must be
positive (and small) for the model to be
supported. For a sample of 136 races
run in the U.K. during the first week of
July 1991, Shin obtains a statistically
significant estimate of .02 of the z coef-
ficient.

Leighton Vaughan Williams and
David Paton (1997) find that the market
spread varies in predictable ways with
proxies for insider trading. First, in
higher quality races where the role of
private information is relatively unim-
portant (z ≈ 0), Vaughan Williams and
Paton find no relation between the
spread and n. Second, they find that the
spread is greater in races where there
are large changes in the odds, a feature
consistent with the presence of inside
information.

The evidence from Paul Gabriel and
James Marsden (1990, 1991) provides
additional support for Shin’s model.
Gabriel and Marsden compare the re-
turns to winning bets in the pari-mutuel
pools to those obtained in the parallel
bookmaking market. Gabriel and

Marsden (1991) find that pari-mutuel
returns exceed the returns from book-
makers (at final odds), and on this basis
conclude that the betting market is not
efficient. This result calls for explana-
tion.38  Nevertheless, notice how the re-
turns differ as the odds increase, as dis-
played in Table 5. For winners at
bookmakers’ odds of 10–1 or less, the
difference in the return is 8.9 percent;
this difference grows to 29 percent as
long shot winners are added to the
group. This implies that the bias is
more pronounced in the U.K. bookmak-
ing market than in the U.K. tote mar-
ket. This may help to explain the differ-
ence in Figure 1 between the returns in
the U.S. pari-mutuel and U.K. book-
maker’s market. Shin’s model focuses
on a bookmaker who adjusts prices as a

TABLE 5
DIFFERENCE BETWEEN PARI-MUTUEL AND BOOKMAKING PAYOFFS FOR WINNING 10P BETS

Odds Range 
of Winner

Number of
Observations

Pari-mutuel
Return

Return at
Bookmakers’ Odds Difference % Difference

Odds < 10 1271 52.7 48.4  4.3  8.9
Odds < 15 1353 63.9 53.7 10.2 19.0
Odds < 20 1408 74.8 59.1 15.7 26.6
All 1435 81.6 63.4 18.2 28.7

Source: Gabriel and Marsden (1991).
Notes: Data are grouped by the final odds in the bookmaking market. All differences are significant at the .01 level.

37 h(p) is an index related to the dispersion of pi,
but is not of interest here.

38 Note that the pari-mutuel odds are by defini-
tion average odds, and that the final odds offered
in the bookmaking market are more akin to mar-
ginal odds. Evidence discussed in the next section
suggests that the volume of late betting (the mar-
ginal odds) is more informed than early betting,
and that adjustment of pari-mutuel odds during
the betting period is incomplete. Note that
Gabriel and Marsden do not measure average re-
turns to bets placed in the bookmaking market. If
heavy betting is responsible for falling odds, the
average return to bettors in the bookmaking mar-
ket will be understated by their figures. There re-
mains a puzzle however; the hypothesis just stated
does not explain why bettors in off-course betting
shops place wagers that are settled at final odds
rather than in the pari-mutuel market.
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consequence of the non-zero prob-
ability of confronting an insider that
backs a long shot. This threat induces
him to trim the odds on long shots rela-
tive to favorites. Pari-mutuel pools, by
construction, are not subject to this
source of the bias.

4.3 Evidence of Informed Trading

Stephen Figlewski (1979) used a
multi-nomial logit model to determine
if the pari-mutuel odds incorporated
the opinion of experts. Let Zi be a
vector of information on horse i. pi is
assumed to be related to Z by the
function

pi = eβzi ⁄ ∑ eβZj

j=1

n

where n is the number of contestants in
the race and β is a parameter estimated
by maximum likelihood. Let Z be com-
posed of two components, Z = [Z1 Z2],
with the associated parameter vector
β = [β1 β2]′. For each horse i, the compo-
nents are Z1i = wi, and Z2i, which contains
forecasts of the finishing position of
horse i by 14 expert handicappers.39

Denote the estimated probability of the
horse that won the kth race by Pw

k , and
the likelihood function for the sample of
M independent races is

L = ∏ 
k = 1

M

Pw
k

The properties of this model imply that
when β = 0, pi = 1 ⁄ n. The significance of
[Z1 Z2] is assessed using likelihood ratio
tests. As Figlewski states, “the important
question is whether adding handicapper

information significantly improves the fit
over what was obtained using the odds
alone.” The effect is marginal; the null
hypothesis that the handicappers add no
information (β2 = 0) is rejected at the 10
percent but not the 5 percent level.
When Figlewski uses the parameter esti-
mates in an out-of-sample test, he finds
that the “handicapper data contributes
nothing.” The “track odds fully discount
the published choices of professional
handicappers” (p. 86–87).

Figlewski also ran a test based on
data where the on-track and off-track
pools were disaggregated. Figlewski
conjectured that the off-track bettors
were less informed than their on-track
counterparts. In this test, the handicap-
per information added significant im-
provement to the predictions based
solely on the off-track pool, while pro-
ducing no improvement in the predic-
tions based solely on the on-track pool,
supporting Figlewski’s conjecture.

Asch, Malkiel, and Quandt (1982)
suggest that informed bettors are more
likely to wait until the end of the bet-
ting period in pari-mutuel markets be-
fore making their bets, a view which is
widely held. There are two reasons for
this. The first is a consequence of the
fact that all payoffs are determined by
the final odds in pari-mutuel markets.
Early in the betting the posted odds are
more volatile—since the pools are small
at that point, a modest wager can drop
the odds on a horse from 7–1 to 3–1.
Informed bettors can obtain a lower
variance of their estimate of the ex-
pected return late in the period, when
the pool is bigger as a result of the ac-
cumulated betting. The second reason
is strategic. A bettor (or group of bet-
tors, such as a racing stable) with inside
information obviously prefers to keep
the information private. Betting large
sums can affect the odds and alert tote-
board watchers—the racetrack’s version

39 The handicappers’ forecasts of the top two
finishers were incorporated in the following way.
Suppose that handicapper 1 picked horse i to win,
handicapper 2 picked horse i to finish second, and
that the other 12 handicappers do not pick horse i
to finish in the top two. Then, if handicapper 1’s
picks (1st choice, followed by the second) are fol-
lowed by handicapper 2’s, and so on, Z2i would be
[1 0 0 1 0 0 0 0 0 0 0 0 ....].
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of a technical analyst—that something
is up. Betting late into a larger pool
thus reduces the likelihood of creating
bandwagon effects in the odds.

Asch et al. use data from the 765
races run at Atlantic City Race Course
in 1978. They find that the winning
horse is “bet down,” that is, its final
odds, OFINAL, are lower than the morn-
ing line estimate of the odds produced
by the track’s expert handicapper, OML.
These results are presented in Table
6.A. OFINAL/OML is 0.96 for horse the
ultimately wins the race. The ratio for
all other horses (including the second
and third place finishers) ranges from
1.06 to 1.63.

Furthermore, late money appears to
be more informed than early money.
Asch, Malkiel, and Quandt calculated
the marginal odds based exclusively on
wagers made in the last eight minutes
of the betting. Using marginal odds,
OFINAL/OML is 0.82 for the winner, and
remains above 1 for horses that don’t
win. As Asch, Malkiel, and Quandt
(1982, p. 306) put it, “winning horses are
especially preferred by the late bettors.”

N. F. R. Crafts (1985) studied the
bookmaking market in the U.K. along
these lines. In this market, the odds
analogous to the North American morn-
ing line are issued as the FP, or forecast
price, by Sporting Life, a daily trade
publication. Representatives of Sport-
ing Life observe the betting, noting in
particular the very large bets and the
odds at which they are transacted. A de-
scription of the betting is then printed
in a subsequent edition of the paper. At
the end of each betting period, these
representatives determine the starting
prices for the horses, SP, which are the
odds offered in the on-course bookmak-
ing market at the end of the betting pe-
riod. Crafts notes that the practice of
paying off at odds offered at the time of
each transaction enhances the value of
inside information, since bandwagon ef-
fects from betting large sums do not af-
fect the payoff.40 

Craft’s sample covers 16,769 horses
that ran between September 1982 and
January 1983. Denote the subjective
probabilities at FP and SP odds as sFP
and sSP. Horses for which either
(i) 1.5 ≤ sSP / sFP < 2, or (ii) sSP ⁄ sFP ≥ 2 are
considered to have been “heavily
backed;” i.e. the wagers in the market

40 It is important to understand how bookmak-
ers change odds during the betting period. Stan-
dard practice is to begin with offers of low odds on
all horses, and to push the odds out until they start
to attract betting. This addresses, to a degree, an
adverse selection problem that the bookmaker
would face if he initially offered odds equal to his
forecast of optimal prices (whereupon relatively
informed bettors would wager only on his mis-
takes). Given the typical odds progression, the
critical question for informed agents is how long
to wait before accepting the offered odds. In the
case of a tightly knit betting coup, the group will
let the odds drift out until the final minute, and
wager all of their money at once (at various loca-
tions) before the odds can adjust. Note that as the
relevant information becomes more widely held,
the incentive to wait is offset by the knowledge
that others are likely to accept the bookmakers
odds, and that this betting may reduce the odds
available on your horse.

TABLE 6A
RATIO OF FINAL ODDS AND MARGINAL ODDS TO

MORNING LINE ODDS BY FINISH POSITION FOR 729
RACES RUN AT ATLANTIC CITY (NJ) IN 1978

Horses
Finishing OFINAL / OML OLATE / OML

First 0.96 0.82
Second 1.16 1.06
Third 1.22 1.17
Also Rans 1.59 1.63

Source: Asch, Malkiel, and Quandt (1982, p. 193).
Notes: Figures in the columns are ratios of average
odds. OFINAL are the final odds, OML are the morning
line odds (projected by the track’s handicapper), and
OLATE  are the marginal odds produced by bettors in
the last third of the betting period.
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have pushed the odds down well below
the forecast level. Table 6.B presents
Crafts’ results. There are 712 horses
satisfying the former and 397 horses
satisfying the latter, more pronounced
condition. Bets on these horses at SP
odds are not profitable, earning pre-tax
returns of –.01 and –.09, respectively.
Bets made at FP odds would have
yielded returns of .64 and 1.41, the lat-
ter being phenomenally profitable. On
the flip side, the 1,175 horses whose
odds drifted out were very poor bets:
horses with sFP ⁄ sSP ≥ 2 yielded returns of
–.64 at FP and –.13 at SP odds; horses
with 1.5 ≤ sFP ⁄ sSP < 2 yielded returns of
–0.63 at FP and –0.38 at SP odds.

Using pari-mutuel data from races
run in Chicago, Robert Losey and John
Talbott, Jr. (1980) obtained a similar re-
sult. Losey and Talbott’s simulation
placed 579 bets on all horses for which
the Daily Racing Form’s expert handi-
capper placed a morning line of 3–1 or
less, but whose final pari-mutuel odds
exceeded this estimate. The returns
were –28.4 percent, which exceeds by a
large margin the 17 percent loss (take-
out rate + breakage) expected if the
rates of return were equal across
horses.

What does one make of these rates of
return? It is clear that trading in these
markets creates measures of the prob-
ability of winning which are signifi-
cantly better than measures produced
by an individual or group of experts.
This suggests that the betting market
aggregates disparate sources of informa-
tion into a superior probability estimate
of the race’s outcome. Second, the odds
adjustment stops short of achieving con-
stant returns; to equalize returns (at SP
odds) between horses whose odds have
fallen and those that have risen would
require additional reductions and addi-
tional increases for each group.41 Third,
and this is Crafts’ main point, these re-
turns clearly point to the existence of
an informed class of bettors. The pub-
lished descriptions of the betting are
helpful in this regard, for they establish
that bets were made at odds substan-
tially greater than SP odds for many of
these winners. Consider these descrip-
tions, first for a winner that had never

TABLE 6B
RATES OF RETURN AT FP AND SP ODDS FOR HORSES CHARACTERIZED BY ODDS MOVEMENTS 

FOR 16,769 HORSES IN THE U.K., 1982–83

Odds Movement Number of Horses Rate of Return at FP Rate of Return at SP

Heavily Backed:
      pSP / pFP ≥ 2 397  1.41 –0.09
  1.5 ≤ pSP / pFP < 2 712  0.64 –0.01
 Drifting Out
  1.5 ≤ pFP / pSP < 2 858 –0.63 –0.38
      pFP / pSP ≥ 2 317 –0.64 –0.13

Source: Crafts (1985, p. 298)
Notes: pSP is the implied subjective probability at SP odds, pFP the same at FP odds. Horses whose odds decline in
the betting will have pSP / pFP ratios which exceed 1.0; vice versa for horses whose odds increase during the betting.
Rates of return do not include the 4% (10%) tax on course (off course) in effect at the time.

41 Incomplete adjustment is related to the favor-
ite-long shot bias, since horses whose odds shorten
are more likely to be favorites, and those who
lengthen long shots. This feature is closely related
to Hurley and McDonough’s (1995) model of the
bias.
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previously finished better than fourth—
“dropped dramatically from 12–1 to
7–2,” and second on a winner with a
similar record—“following some 8–1
and 6–1 was reduced from 4–1 to 11–4
favorite” (Crafts 1985, p. 301). It seems
quite unlikely that the average punter
was responsible for the tumbling odds
in these cases.

Adi Schnytzer and Yuval Shilony
(1995) provide indirect evidence of
inside information. Schnytzer and
Shilony study the betting market in
Australia, in which on-track and off-
track pari-mutuel betting coincides with
an on-track bookmaking market. Their
data consists of the win pool shares
from the on- and off-track pari-mutuel
markets for all horses competing in 168
races run in 1984. The betting from
both sources is aggregated into a single
pool for determining payoffs, with
about 3/4 of the money originating from
off-track bets. Let wi

on represent the
share of the on-track win pool for horse
i, and wi

off represent that of the off-track
market. Betting at the two sources is
quite different: the correlation coeffi-
cient of wi

on and wi
off is only .48; the rank

order correlation is .40. On-track bet-
tors appear to be better informed, ob-
taining a (pre-takeout) rate of return of
9.7 percent compared with a loss of 3
percent in the off-track market.

Schnytzer and Shilony consider the
hypothesis that on-track pari-mutuel
bettors can capitalize on inside informa-
tion created in the bookmaking market.
Their story, like that of Asch et al., is
based on common racetrack wisdom. An
individual possessing inside information
will generally be better off placing large
bets with bookmakers rather than in the
pari-mutuel pool, for two reasons. First,
bookmakers will accept large wagers at
the odds posted the moment the bet is
placed, whereas a large wager reduces
the odds in the pari-mutuel pool. Sec-

ond, large bets signal information to
others when the odds on a horse fall
sharply, and can create bandwagon ef-
fects in the betting. Bandwagon effects
will further reduce the pari-mutuel
odds, while having no effect on bets
already contracted for in the bookmak-
ing market. Schnytzer and Shilony hy-
pothesize that on-track pari-mutuel bet-
tors observe tumbling odds generated
by insiders in the bookmaking market
and can capitalize on this activity,
whereas the off-track bettors are unable
to do so.

Schnytzer and Shilony use the differ-
ence between wi

on and wi
off as a proxy for

“plunges” in the on-track market odds
based on inside information. Let X1i = 1
when wi

on − wi
off > 0 .1; X1i = 0 otherwise;

and X2i = 1 when 0 < wi
on − wi

off ≤ 0.1;
X2i = 0 otherwise. Hence, when X1i = 1,
the on-track market’s subjective prob-
ability that horse i wins exceeds that in
the off-track pool by .1 or more; less so
when X2i = 1.

The authors estimate equations simi-
lar to Figlewski (1979) in order to test
for the presence of inside information.
Their maintained hypothesis is that all
public information is fully reflected in
the (much larger) off-course pools.
Consider then a set of regressors
Z = [Z1 Z2 X] with associated coefficients
β = [β1 β2 β3]′ for the Figlewski model in
which Z1i = wi

off, Z2i = wi
on, and Xi contains

the proxies X1i and X2i defined above.
The basic model contains just public in-
formation (Z1). If private information is
either not present or not useful, then
the exclusion restriction β2 = 0 should
be accepted, but it is decisively
rejected. If X is added to the basic
model, one obtains a similar result,
rejecting the hypothesis that β3 = 0. If
one accepts Schnytzer and Shilony’s
hypothesis that the off-track pools fully
reflect all public information, this evi-
dence suggests that inside information
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is present at the track and important to
predicting the outcome of the race.

The startling finding in Schnytzer and
Shilony is the following. Suppose one
obtained measures of wi

on − wi
off just

prior to the race. The authors show that
bets placed on horses in proportion to
this difference would have realized an
after-tax profit of between 26.1 and
32.5 percent—very large numbers, in-
deed.42  Although the sample of races
is small and the exercise should be
replicated, this is substantial evidence
of inside information in the on-track
betting market.

4.4 Are There Profitable 
    Wagering Rules?

The answer to this question is a quali-
fied “Yes.” The qualifications stem from
the fact that (1) some opportunities
arise infrequently; and, (2) in some
cases the betting pools are small, limit-
ing the ability of net earnings to cover
the opportunity cost of time. With these
caveats in mind, there are some inter-
esting cases of wagering rules which
have been found to be profitable in
these markets. We discuss them in
turn.

Trends in the Odds. Based on his ear-
lier paper, Crafts (1994) proposed the
following trading rule in the U.K. mar-
ket: bet when a horse has not yet
started this year, sSP ⁄ sFP > 1.5, and the
SP odds are less than 7–1. The heavier
than anticipated betting indicates in-
sider knowledge of the horse’s fitness
and the stable’s intentions to put forth a
winning effort. Bets at SP earned rate
of profit of .558, and a phenomenal
2.619 had one made a bet at FP (the
first insider to move?). Although the
odds have tumbled, the market has not
completely adjusted to the presence of

inside information by the close of bet-
ting. Crafts (1994, p. 548) appropriately
cautions those seeking to capitalize: “in
a period of five years only 88 bets
would have resulted from a very sub-
stantial investment of time and effort.”
Based on their similar findings on late
betting, Asch, Malkiel, and Quandt
(1984) seek to determine if following
the late money in the North American
pari-mutuel market could be profitable.
The rule they explore is much less spe-
cialized than that of Crafts (1994), and
does not fare so well. Bets are placed
on horses whose odds drop late in the
betting. Although they initially report
evidence of positive profits, this was the
result of a programming error.43  The
results reported in Asch, Malkiel and
Quandt (1986) correct the original pro-
gramming error and also test the system
on a new set of data. Although following
the late money yields a loss which beats
the track’s takeout rate, the scheme is
not profitable.

Pseudo-Arbitrage Using the Win
Pool’s Probability Estimates. Ali (1977)
examined daily double bets, which re-
quire the bettor to select the winner of
consecutive races. Assuming the win
pool provides efficient estimates of
probabilities and that the two races are
independent, efficient odds for the dou-
ble bet are simply the inverse of the
multiple of the two probabilities less 1.
Ali’s data conform to this prediction.

David Harville (1973) presented a set
of formulas for determining the prob-
ability that horse j finishes second or
third in an n-horse race. These formulas
are based on pk, the probability that
horse k wins the race, and a critical as-
sumption concerning ρj, the probability
that horse j beats all horses other than
horse k. The joint probability that horse

42 The authors note that the information re-
quired to exploit this was not available to on-track
bettors in the real time setting.

43 Place and show odds were converted to pay-
offs with faulty computer code.
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k wins with horse j second is assumed to
be pk ⋅ ρj, where ρj = pj ⁄ (1 − pk).44  Ex-
tending this logic, combinations of joint
probabilities can be used to estimate
the probability of any rank order of fin-
ish. This can be used to estimate the
probabilities of exactas, bets where the
order of the first two finishers must be
selected, and place and show bets,
which pay off if the selected horse fin-
ishes in the top two or top three, re-
spectively. The resulting equations have
been widely applied and are now known
as the “Harville formulas.”

In a clever application of efficient
markets theory, Hausch, Ziemba, and
Mark Rubinstein (1981) constructed a
wagering rule for place and show bet-
ting. Hausch et al. obtain efficient esti-
mates of the probabilities of winning
from the win pool and use the Harville
formulas to calculate the probabilities
of running second or third. The ques-
tion, then, is whether the place and show
pools are efficient. Assuming the Harville
formulas measure the true place and show
probabilities, Hausch et al. show that the
win pool shares should equal the place
and show pool shares; i.e. wi = place i = showi,
where placei and showi are the shares of
the respective pools bet on horse i. If
these ratios differ, either the Harville
assumption is wrong or the market is in-
efficiently pricing one of the wagers.
Hausch et al.’s prior is that place and
show pools are likely to be less efficient
than the win pool for two reasons. First

is the complexity of determining the ef-
ficient payoff. Second, assuming that
the typical bettor is risk-loving, few will
pay attention to these pools, in which
the payoffs are relatively low.

The proposed betting rule is to wait
until the last two minutes of the betting
period, calculate the ratios for likely
(low odds) horses and bet on horse i in
the place or show pool when wi ⁄ place i
or wi ⁄ showi is 1.15 or greater. Hausch et
al. report that a positive, significant rate
of return was realized in several simula-
tions at various racetracks.

This wagering rule is the basis of the
“Dr. Z System,” which has received con-
siderable attention in the racing world.
The formulas have been encoded on
computer chips and detailed in books
for laymen (Ziemba and Hausch 1987).
The widespread dissemination of this
information should have a depressing
effect on realized returns. This issue
should be explored systematically, al-
though there is already some evidence
that this is the case. Financial columnist
Daniel Seligman (1985) tested the Dr. Z
System at Belmont Park in New York. In a
two-week period, the system generated
33 bets from 108 races, resulting in a rate
of return of –0.067. Jay Ritter (1994) ar-
gues that the racetrack market is one in
which Dr. Z-type bettors efficiently ar-
bitrage the implied price differences
between different pools. Ritter obtains
ex post profitability for a Dr. Z-type sys-
tem using the known pool shares from
the close of the market, but he shows in
a simulation that a modest degree of
uncertainty in the pool shares is suffi-
cient to drive the rate of return to zero.

Cross-Track Arbitrage. Wagering
takes place at multiple locations, notably
for races of national interest such as the
Kentucky Derby and the Triple Crown
series. In some cases the pools at each
locale are independently managed, with
the consequence that the payoffs at one

44 Harville thus assumes that there is a “race
within the race,” where the probability the horse j
beats the remaining n-2 horses is independent of
where k finishes. Indeed, it is independent of
whether or not horse k even runs in the race. Al-
though this is a useful assumption, there are cases
in which it will mislead, since outcome of a race
can be influenced by the strategies of the runners
and the number of runners with each strategy. See
Donald Hausch and William T. Ziemba (1994) for
further discussion of the systematic biases in prob-
abilities derived from this assumption, and Hal Stern
(1990) for an alternative to the Harville model.
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place, say Hollywood Park in California,
might differ from another, say Churchill
Downs in Kentucky.45  Differences in
payoffs appear to reflect local informa-
tion or perhaps a rooting interest in a
locally based horse. For example, the
1986 Derby winner Ferdinand (a horse
based in California) paid off at odds of
7.4.–1 at Hollywood and 17.7–1 at
Churchill. Price differences this large
are obvious candidates for arbitrage.

Hausch and Ziemba (1990) provide a
systematic analysis of price differences
for nine Triple Crown races in the early
1980s. The prices come from separate
wagering pools at between four and
eleven race tracks scattered throughout
North America.46  Hausch and Ziemba
record the final odds at each location,
and construct a portfolio of wagers de-
signed to yield a certain return of $1.
By wagering the appropriate amount on
each horse at the track where its odds
are the highest, they can calculate the
minimum cost of winning $1. This cost
is less than $1 in seven of the nine cases,
with an average rate of return of about
5 percent. These opportunities do not arise
frequently however, and some of the
wagering pools are small enough
(Hausch and Ziemba 1990, p. 72) to limit
the bet size and hence the magnitude of
the returns. These considerations make it
a leap to consider cross-track arbitrage
as an unexploited profit opportunity.
Still, the evidence does represent an-
other crease in what is predominantly a
smooth pattern of efficiency in the race-
track betting markets.

4.5 Summary of the Literature 
   on Racetrack Betting

Before turning to point spread bet-
ting, it is worthwhile to summarize the
key findings of the literature on race-
track betting.

1. Win pool shares wi are good
approximations to pi, the probability
that a horse i wins the race, the favor-
ite–long shot bias notwithstanding.

2. There is ample evidence that the
betting market creates improved esti-
mates of pi through trading. Disparate
sources of information are aggregated
in the market, and the opinions of
“experts” appear to be fully discounted
in market prices.

3. Odds adjustments improve predic-
tion, but adjustment stops short of be-
ing complete. Due to transaction costs,
there is little incentive for additional
trading to complete the process, since
final odds in both pari-mutuel and fixed
odds markets generally yield negative
expected returns.

4. Late money is smart money. In ad-
dition, there is evidence that suggests
that informed traders earn positive
profits in the bookmaking markets of
the U.K. and Australia.

5. Representative-agent models em-
phasizing risk-loving behavior can pro-
vide an equilibrium explanation of the
favorite-long shot bias. However, there
is abundant evidence (points 2–4 above)
that bettors are different, and that
these differences are integral to estab-
lishing efficient prices. Models with
heterogenous bettors, in which risk
preference is ignored, are consistent
with some features of the favorite-long
shot bias, but more work needs to be
done. Work documenting the source of
variation in the favorite-long shot bias
would be particularly useful.

6. Trading rules documenting posi-
tive profits exist, but in three of the

45 Advances in telecommunications and pari-mu-
tuel systems now enable such wagering pools to be
merged. Merged pools have since become the
norm.

46 The number of tracks offering such wagering
varied during the period, as did Hausch and
Ziemba’s success in obtaining information on the
wagering pools. Note that I ignore for purposes of
this discussion one race where their sample con-
tains data from just two race tracks.
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four cases studied here—Crafts (1985),
Hausch, Ziemba, and Rubinstein (1981),
and Hausch and Ziemba (1990)—the re-
turns from following these rules may
not cover the fixed costs required to
execute them. The fourth rule (Schnyt-
zer and Shilony 1995) used data not
available in a real-time setting, but is
suggestive of a very large discrepancy
between returns based on public and
private information.

In sum, models of efficient pricing
can account for much of the variation in
prices and rates of return at the race-
track. Yet numerous outstanding puz-
zles remain, and fundamental modeling
problems remain to be solved. The evi-
dence suggests that an informed class of
bettors is responsible for altering prices
in these markets, yet observed returns
are uniformly non-positive. We do not
yet have an equilibrium model that mo-
tivates the acquisition of information
and at the same time remains consistent
with these facts.

5. Point Spread Betting on Team Sports

5.1 Simple Tests of Point Spread
   Efficiency

Although fixed odds betting exists on
some team sports, most papers have fo-
cused on the point spread market, in
which bettors attempt to “beat the
spread” through superior prediction of
the score difference of games.47  Most
studies focus on the restrictions im-
posed on point spreads by models of ef-
ficient pricing. Two basic questions
have been extensively explored. First, is
it possible to identify systematic profit
opportunities in point spread betting?
Second, provided that certain distri-
butional assumptions are satisfied, effi-

ciency implies that the point spread
(PS) is an unbiased, minimum variance
estimator of the difference in points
(DP) scored in a game—does this prop-
erty hold? Beyond this, some interest-
ing and creative applications of the effi-
ciency concept have been employed,
but we begin with the basics.

Efficient pricing of wagers is gener-
ally asserted by the absence of profit
opportunities condition, as defined in
Section 2.2. Let p (1 – p) represent the
probability of winning a point spread
bet by wagering on the favorite (under-
dog). Using equation (2), efficiency re-
stricts p (also 1– p) to the interval

p ∈[.476, .524] (5)
since τ = .1 in the Las Vegas market.
Again, τ = 0 would imply that p = .5, and
thus that PS is the median of the distri-
bution of DP.

An alternative to the favorite/under-
dog condition redefines the score dif-
ference and point spread to a home
team minus visiting team basis. This
procedure has been adopted in much of
the recent literature. This is useful,
since point spreads under this ordering
measure the market’s estimate of the
home court advantage, a factor (in con-
trast to a team’s favoritism) which is
fundamental in its own right to the out-
come of the game.

Provided that the distribution of
score differences is symmetric, an addi-
tional implication of efficiency is that
PS is an unbiased forecast of DP:48 

PS = E(DP) (6)
Continuing within this framework, a
stronger definition of efficiency implies
that the point spread fully incorporates

47 A notable exception is Woodland and Wood-
land (1991), which shows that no favorite long-
shot bias exists in the odds market for baseball
games.

48 Again, this follows if transactions costs (τ) are
zero; with symmetry the median and mean of
point differences coincide. This is strong but al-
lows the use of standard hypothesis testing proce-
dures. The exchange between William Even and
Nicholas Noble (1992), and Gandar et al. (1993)
covers distributional issues.
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all relevant information. Denoting the
set of all relevant information by Ω, this
requires that

E(DP − PS  | Ω) = 0 (7)

which says that the forecast error is un-
related to relevant information (because
this is already present in equal amounts
in both DP and PS).

Table 7 presents data from the bet-
ting market on NBA games. This table
can be used to assess the implications

listed above, using both the home team-
away team and favorite-underdog order-
ing of score differences. Also included
are all partitions of these orderings, in-
cluding games in which there was no fa-
vorite (PS = 0). Panel A examines equa-
tion (5). In no partition is the ratio of
winning to total bets outside the bounds
implied by (5).

Sample means and standard devia-
tions of DP, PS, and DP-PS are pre-
sented in panel B of Table 7. Note the

TABLE 7
SCORE DIFFERENCES AND POINT SPREADS FOR NBA GAMES

A. Sample Frequencies
Differencing Method/

Sample Partition Games Bets Wins Ties Wins/Bets

A1. Home-Away
    All Games 5636 5510 2789 126 .506
    Home Favorites 4341 4243 2148  98 .506
    Home Underdogs 1209 1181  600  28 .508
    Pick ’em Games   86   86   41   0 .477
A2. Favorite-Underdog 5550 5424 2729 126 .503

B. Sample Means and Standard Deviations
Differencing Method/

Sample Partition DP PS DP-PS t-stat

B1. Home-Away
    All Games  4.62(12.42)  4.38(5.59)  0.24(11.15)  1.62
    Home Favorites  6.87(11.82)  6.81(3.62)  0.06(11.07)  0.37
    Home Underdogs –3.09(11.74) –4.05(2.30)  0.96(11.45)  2.91
    Pick ’em Games –0.91(10.58)  0.00(0.00) –0.91(10.58) −0.79
B2. Favorite-Underdog  6.05(11.83)  6.21(3.56) –0.16(11.16)  1.06

Notes: (i) Sample Characteristics: The sample encompasses all regular season NBA games played in the six seasons
from 1982–83 through 1987–88. Score differences were obtained from the annual edition of the Sporting News
NBA Guide. Point spreads were obtained from The Basketball Scoreboard Book. These point spreads are those
prevailing in the Las Vegas market about 2.5 hours prior to the start of play (5 PM Eastern time on a typical night).
No point spread is reported for 22 games during this period, which reduces the sample from 5658 (all games played)
to 5636 (all games with point spreads).
 (ii) Panel A: This panel lists the number of games, bets (the number of games in which DP ≠ PS, which are ties),
and the number of bets won by wagering on the team in the first position of the score difference. Wins/Bets is the
sample estimate of p, the proportion of such bets won. Since this proportion always lies inside the bounds given by
(2), no test statistic is required to evaluate this implication of efficient pricing.
 (iii) Panel B: Standard deviations are given in parentheses. The t-statistic tests the null hypothesis that the mean
forecast error (DP – PS) is zero. Although the null is rejected in the case of home underdogs, the failure to reject
efficient pricing in panel A for this partition indicates that the rejection in B is caused by a departure from the
symmetry assumption.
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relatively high variability in DP: for pick
’em games in which PS = 0, the average
score difference is –0.91; but the range
including just one standard deviation is
[–11.49, 9.67], or about 21 points. NBA
score differences thus appear to be very
noisy. The hypothesis that PS is the ex-
pected value of DP can be examined in
panel B. The right-hand column con-
tains t-statistics for testing the null hy-
pothesis that E(DP – PS) = 0. Note that
t = 2.91 in the case of home underdogs,
which is sufficient to reject (6). The in-
formation in panel A suggests that this
rejection is due to a violation of the
symmetry condition, and not a violation
of efficient pricing, since the propor-
tion of wins from bets is .508 in this
partition. It makes sense to examine the
data with simple procedures such as
these so that subsequent errors are
avoided, an issue we revisit in the fol-
lowing section.

Vergin and Scriabin (1978) examine a
number of simple betting rules for po-
tential profitability, and conclude that
“discernable biased patterns” existed in
NFL point spreads during the 1969–74
seasons. An inaccurate but common
interpretation of their results is that
“Vergin and Scriabin have identified ex-
ploitable biases . . . [and] show that
arbitrage possibilities exist” (Peter Pope
and David Peel 1989, p. 325). The arbi-
trage claim can be traced to a single an-
ecdote in Vergin and Scriabin (p. 816)
on the existence of different point
spreads in different cities for the same
contest. What Vergin and Scriabin actu-
ally show is that significant profits could
have been realized if they obtained a
point spread favoring a given betting
strategy by one or two points over the
published point spread. A proper inter-
pretation of this evidence is that differ-
ences in the spread as small as one or
two points can have a tangible effect on
wagering profitability.

The success of the Vergin and Scri-
abin strategies against actual point
spreads is summarized in Table 8 for
two samples. The table lists the sample
sizes, proportion of winning bets, and
p-values for two hypothesis tests for
each strategy.49  Column 3 lists the p-
value from testing the hypothesis that
the proportion equals 0.5. This does not
test the profitability proposition how-
ever, as pointed out originally by Tryfos
et al. (1984). Column 4 lists the p-value
from testing the hypothesis that the
proportion  < 0.524. While these strate-
gies were profitable in Vergin and Scri-
abin’s sample, the p-values in column 4
are too high to reject the null hypothe-
sis that p < .524 for two strategies,
and a third is marginal (the p-value is
.112).

Tryfos et al. (1984) point out that one
difficulty with this type of analysis is
the large number of strategies “that can
be defended on reasonably plausible a
priori grounds.” Hence, it is not clear
what a small number of biases really
tells us about the point spread market.
The acid test is if the strategies found
profitable in an original study remain so
out of sample. Tryfos et al. conducted
out-of-sample tests on the Vergin and
Scriabin strategies. The results for the
1975–81 period are presented in panel
B of Table 8. The strategy of betting big
underdogs remained profitable, but the
result is not statistically significant (the
p-value is .277); the remaining strate-
gies incurred losses. The Vergin and
Scriabin paper and its extension by
Tryfos et al. established a pattern that
would be repeated: sightings of profit-
able wagering rules are occasionally
reported, but they often disappear on
subsequent investigation.

49 Of the rules considered in Vergin and Scri-
abin, only the betting rules most favorable to the
profitability proposition are presented in Table 8.
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5.2 The Simple Linear Prediction Model

Equation (6) has been repeatedly
examined in the context of a linear
prediction model. The basic form of
this model is

DP = α ⋅ H + β ⋅ PS + ε (8)
where H is a vector of ones, α and β are
regression coefficients, and ε is an error
term. Market efficiency is examined by
testing the joint null hypothesis that α =
0 and β = 1; i.e., that PS is an unbiased
linear predictor of DP. With scores and
spreads ordered on a home team minus
away team basis, it is clear that the inter-
cept term α reflects advantages of the
home team that are not priced in the
betting market.

The first versions of equation 5.4
were estimated by Ben Amoako-Adu,
Harry Marmer, and Joseph Yagil (1985)
and Richard Zuber, John Gandar, and
Benny Bowers (1985), and were pre-
sented as evidence that point spreads
were very poor and probably inefficient

predictors of score differences of pro-
fessional football games. Zuber et al.
estimated separate regressions for each
of the 16 weeks of the 1983 NFL regu-
lar season, and failed to reject the
non-informative null hypothesis that DP
is unrelated to PS (i.e. that α = β = 0)
in 15 of the 16 weeks.50  They conclude
(p. 802) that the noninformative null
hypothesis “is as consistent with the
sample data as is the efficiency hy-
pothesis.”

Amoako-Adu et al. reversed the de-
pendent and independent variables in
the regression. Their estimated equa-
tion is PS = −4.47 + 0 .04 ⋅ DP, with an R2

of .04 from a sample of 233 games.51

TABLE 8
THE PROFITABILITY OF SIMPLE BETTING RULES

A. Vergin and Scriabin’s Sample 1969–74
N p̂ p-value (p = 0.5) p-value (p < 0.5238)

Bet on big underdogs 674 .546 .017 .249
Bet against big winner  78 .538 .499 .795
Bet on turnaround team  59 .627 .051 .112
Bet on strongest team  57 .667 .012 .012

B. Tryfos et al.’s Sample 1975–1981
N p̂ p-value (p = 0.5) p-value (p < 0.5238)

Bet on big underdogs 735 .535 .060 .277
Bet against big winner N/A N/A N/A N/A
Bet on turnaround team  76 .447 .359 —
Bet on strongest team  71 .459 .486 —

Notes: p̂ is the proportion of winning bets from N tries. The p-values in the final two columns test the hypothesis
that the true probability of winning is .5, and < .5238, respectively. Big underdogs are predicted to lose by more than
5 points by the point spread. The big winner is the team with the largest margin of victory in the prior week. The
turnaround team is the team that beat the spread by the largest amount over the prior 4 weeks. The strongest team
is the team with the largest victory margin over the prior 4 weeks. Tryfos et al. did not reexamine the big winner
strategy.

50 Note that even in the absence of point spread
effects (let β = 0), Zuber et. al’s non-informative
null hypothesis could have been rejected if α were
sufficiently non-zero. Hence, one interpretation of
their results is that it is difficult to establish the
well-known positive effect of playing at home us-
ing a single week’s sample of games.

51 In contrast to most studies, the ordering of
point differences in Amoako-Adu et al. is as
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This apparently weak relation lead them
to conclude (p. 376) that “there is very
little connection between spreads and
actual game outcomes.”

These conclusions are simply wrong.
The lack of a tight statistical relation
between DP and PS in these studies is
due to the relatively large variation in
DP. Sauer et al. (1988) argue that the
weekly samples in Zuber et al. are too
small (14 games each) to reject a non-
informative null hypothesis. Amoako-
Adu et al.’s method dilutes the signal to
noise ratio. In the standard setup, the
estimate of β in equation (8) is
cov (PS,DP) ⁄ var (PS). By reversing the
dependent and independent variables,
the denominator becomes var(DP). This
adds the noise source (ε) to the denomi-
nator, which reduces the slope coeffi-
cient in proportion to the variance of ε,
and makes for a more complicated test
of efficiency.52  

Subsequent papers estimating equa-
tion 5.4 in large samples (Gandar et al.
1988, and Sauer et al. 1988) find that
DP and PS are indeed related and were
unable to reject the efficiency null. In-
deed, pooling data from six NFL sea-
sons, Gandar et al. obtained point esti-
mates for α and β of 0.01 and 1.02,
respectively. Although the equation ex-

plained little of the variance in DP (R2

was .14), the F-statistic testing the joint
hypothesis that α = 0, β = 1 was also
tiny (0.03). What seemed to be clear
was that (a) score differences were
noisy and hard to predict, and (b) the
point spread was a weak but unbiased
predictor of the score difference.

Or was it? Joseph Golec and Maurry
Tamarkin (1991, p. 312) argued that
these “tests have low power to reject
the null hypothesis of market efficiency
because they are mis-specified.” The
lack of power stems from the naivete of
regressions based on (8), since it can
test for mispricing only in the home
team-visitor dimension. Golec and
Tamarkin argue that these regressions
ignore potentially relevant information;
for example, most of the time one team
is favored and the other is an underdog,
and this information is not fully ac-
counted for in (8).

Potential biases can potentially can-
cel each other out, in the following way.
Suppose that 2/3 of the games consist of
favorites playing at home, and that fa-
vorites at home are overbet on average
by one point (i.e. that E(DP − PS) = −1 in
this sub-sample). In the remaining 1/3
of the games the home team is an un-
derdog, and suppose these teams are
underbet by two points. The reciprocal
nature of point differences implies that
favorites playing away are overbet by
two points. Thus, in the full sample, all
favorites are overbet, on average, by
1.67 points. But when point differences
are constructed on a home-away basis,
the sample means of DP and PS are the
same—the two biases posited above
cancel exactly. It follows that a regres-
sion based on (8) using home-away
point differences will fail to detect what
is, by construction, an obvious case of
mispricing. This is the concern of Golec
and Tamarkin.

But their cure for this problem is

printed in the daily papers; i.e. if the Cowboys are
favored by 7 points over the Steelers, PS = −7.
Hence there are no positive values for PS in the
sample.

52 The ratio of the slope coefficient to its stan-
dard error (t-statistic) in Amoako-Adu et al. of
2.93 implies there is a significant relation between
DP and PS, but the low value of the regression
coefficient makes the relation appear weak. Using
the definitions of the least squares coefficients,
their estimates, and the reported values of the t-
statistic and R2, one can calculate the coefficients
and t-statistic for the regression in its standard
form. This equation is DP = −.527 + 0.89 ⋅ PS; by
definition the value of R2 and the t-statistic (for
β = 0) are the same. The t-statistic testing the
hypothesis that β = 1 is –0.36; hence this evidence
from Amoako-Adu et al. is actually consistent with
efficient pricing.
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worse than the disease. A simple ap-
proach would be to partition the data as
done in Table 7. Any potential bias in
these dimensions will be revealed in the
appropriate partition of the sample.
Golec and Tamarkin stick with the re-
gression model, and seek to estimate
the following equation:
DP = αI ⋅ I + αH ⋅ H + αF ⋅ F + β ⋅ PS + ε  (9)
where I is a vector of ones, H is one for
home teams and zero otherwise, and F is
one for favorites and zero otherwise.
Either the home-away or favorite-under-
dog method of differencing this specifi-
cation yields a singular matrix of regres-
sors. Golec and Tamarkin’s solution is to
randomize the differencing method (ad-
justing the values of H, F, and PS ac-
cordingly) and estimate the parameters
using the randomized data. Their proce-
dure yields nonzero estimates of αI in
two specifications, leading Golec and
Tamarkin to conclude that “unspecified
biases” exist, “demonstrating that our
statistical tests are more powerful” (p.
313). This statement makes no sense.
The estimates of αI are roughly the mean
(conditioned on values of other regres-
sors) of DP, where DP represents ran-
domly determined point differences and
hence has no meaningful interpretation.

William Dare and Scott McDonald
(1996) address the differencing prob-
lem by taking appropriate account of
the reciprocal relations inherent in
point differences. The following equa-
tion is a simplified version of their
model, appropriate for home-away
point differences:

DP = αHH + αFZ + βPS + ε (10)
In this equation Z is a composite fa-

vorite/underdog dummy variable which
is 1 when the home team is favored and
–1 when the home team is an under-
dog.53  The simplest way to see how

such an equation can be estimated is to
posit a primitive 0/1 dummy variable
model for the points scored by a team i:

Pi = γ HHi + γ AAi + γ FFi + γ uUi + εi

where Ai = 1 when team i plays away
from home and γ AAi is the contribution
of this factor to points scored by team i,
with a similar interpretation of γUUi,
where Ui = 1 when team i is an under-
dog. Other variables are as previously
defined.

The key is Dare and McDonald’s im-
position of symmetry on the home/away
and favorite/underdog effects, so that
γU = −γF and γA = −γH. Symmetry clearly
makes sense since the model focuses on
the possibility of bias in point differ-
ences: if favorites are overbet by 2
points then underdogs must be under-
bet by two points. Let DP = Pi − Pj where
i is the home team and j is the visitor.
Then DP = γH(Hi − Hj) + γF(Fi − Fj) + εi − εj.
(Hi − Hj) = 2 under home-away differenc-
ing; (Fi − Fj) is 2 when the home team is
favored and –2 when the home team is
an underdog. Straightforward transfor-
mations to this equation yield equation
(10), with efficiency implying β = 1,
αH = αF = 0.

Dare and McDonald estimate a ver-
sion of (10) which allows for slope
effects in addition to intercept shifts,
along with the ability to handle games
with PS = 0, and games played at
neutral sites. In contrast to Golec and
Tamarkin, Dare and McDonald’s speci-
fication results in a failure to reject the
efficiency null on these dimensions of
the data.54 

53 For simplicity assume there are no “pick em”
or neutral site games in the data. The full specifi-

cation in Dare and McDonald handles these
games appropriately.

54 Their sample of 6685 college games over the
same period does yield an estimate of 0.77 points
for the condition of being favored (α F). The null
is that this coefficient is zero, which leads Dare
and McDonald to conclude that “lines of favored
teams were downwardly biased by 0.77 points” (t =
2.46). This result probably stems from a violation
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The misspecification charges levied
at equation 5.4 by both Golec and
Tamarkin and Dare and McDonald are
overstated—the “differencing problem”
is a red herring. The Dare and McDon-
ald specification incorporates the favor-
ite/underdog information in the model
in an appropriate way and thereby adds
power against the null, but only in this
dimension of the data. Numerous is-
sues, notably the relation of fundamen-
tal team characteristics to outcomes and
point spreads, are omitted from these
models. In pursuing these issues, the
Dare and McDonald result can be re-
lied on to simplify matters; i.e., it is ap-
propriate to ignore the favorite/under-
dog status of the team, and home-away
differencing can be used in these re-
gressions.55 

5.3 Pricing of Fundamental Factors

Zuber et al. (1985) investigated the
market’s incorporation of fundamental
factors into point spreads of NFL
football games. Their procedure con-
tains three components. First, an OLS
model is estimated in which the score
difference of a game is explained by
differences in the characteristics and
contemporaneous performance of the
opposing teams. These variables include

differences in yards gained rushing,
yards passing, fumbles lost, intercep-
tions, penalties incurred, and two
indexes of team strength: the number of
rookies, and the prior number of wins.
Denote the difference in characteristics
between teams playing the nth game in
week m by the vector Xmn = Xmn

h  − Xmn
a ,

where Xh and Xa represent charac-
teristics and performance attributes for
the home team and away team, respec-
tively. The contemporaneous least
squares model of the score difference is
then

DPmn = γ + δXmn + ωmn. (11)

where γ is a constant and ωmn is a game-
specific disturbance. Home-away differ-
encing is used, hence the estimate of γ
measures the home field advantage, and
δ is the marginal effect of the perfor-
mance measures on the score difference.
The regression achieved a good fit (R2 of
.733) and the coefficient estimates are
sensible.

The second component is an attempt
to predict future score differences.
Team-specific moving averages of pass-
ing yards, rushing yards, etc. from prior
weeks are used to forecast Xmn

h  and Xmn
a

for the following week’s games. These
forecasts are combined with coefficient
estimates from (11) to yield predicted
score differences for subsequent games.
This amounts to a simple fundamentals-
based pricing model. The third compo-
nent tests market efficiency with a
simulation in which appropriate bets
are placed when the market point
spread differs from the model’s predic-
tion. Zuber et al. found that their
method earned a profit during the 1983
NFL season. On this basis they reject
efficient pricing: point spreads seem-
ingly ignore relevant information con-
tained in their list of fundamentals.

This result proved to be fragile.
Sauer et al. (1988) showed that while

of the symmetry condition; blowouts are relatively
common in college football, which can lead to this
result. This conjecture is supported by Golec and
Tamarkin’s data, where they report that the per-
centage of winning bets on favorites was 49.8% in
their sample of 6514 college games. Dare and
McDonald do not report such a statistic. Dare and
McDonald also refer to a possible violation of the
efficiency condition for Super Bowl games, but
this attention seems unwarranted given there are
only 14 such games in their sample. As discussed
earlier, the large variability of point differences
renders samples of this size uninformative.

55 As a general econometric matter, the imposi-
tion of true restrictions improves the efficiency of
parameter estimation. Thus, unless there is evi-
dence to expect a nonzero coefficient estimate,
the “factor” should be excluded from the regres-
sion.
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the contemporaneous regression model
held up well out of sample, the Zuber et
al. performance forecasts yielded no im-
provement over the point spread in pre-
dicting score differences. Denote the
forecasts of Xmn by Xmn

f , and add this
variable to the equation (8):

DPmn = α + β ⋅ PS + θ ⋅ Xmn
f  + εmn (8′)

Efficiency implies that the regressor
Xf will not improve the fit of this equa-
tion. Hence the complete efficiency
null is that α = 0, β = 1, and θ = 0. Sauer
et al. fail to reject this restriction for
both the 1983 and 1984 NFL seasons.56

The inference is that the betting market
makes efficient use of the information
contained in teams’ past performances.
In addition, Sauer et al. show that the
Zuber et al. betting method produced
heavy losses out of sample. The profit-
ability result may thus be spurious.

5.4 Point Spread Variation 
   and the Volatility Debate

An important debate in financial eco-
nomics concerns the ability of funda-
mentals-based pricing models to explain
variation in the prices of financial in-
struments. It is well established that ag-
gregate stock market returns exhibit
volatility which is inconsistent with text-
book models. John Cochrane (1991)
shows that simple modifications can ac-
count for much of the excess volatility
result. In contrast, Stephen LeRoy
(1989) and Robert Shiller (1989) argue
that the models based on fundamentals
are incapable of explaining observed
volatility.

The debate over the sources of excess
volatility will be difficult to resolve, in
part due to what LeRoy (1989) calls
“the curse of dimensionality”—a change

in expectations tied to one of many fac-
tors at many future dates can cause the
price of a financial asset to change. This
multiplicity of possibilities makes it dif-
ficult to tie price changes to changes in
expectations. Richard Roll’s (1984,
1986) celebrated but failed attempts to
obtain ex post explanatory power in em-
pirical models of asset prices exemplify
this problem.

This problem is greatly simplified in
the wagering market, since here the set
of relevant fundamentals is reduced to
those affecting a single, easily observed
outcome. Pricing issues in which expec-
tations depend on the expectations of
others, for example, are largely irrele-
vant in point spread markets. This pro-
vides a unique opportunity to study the
relation between fundamentals, price
changes, and outcomes. Sauer (1991),
William Brown and Sauer (1993a), and
Jim Dana and Michael Knetter (1995)
exploit this feature using explicit mod-
els of score differences, and examine
the restrictions these models impose on
efficient point spreads.57  

Sauer (1991) isolates a fundamental
factor with observable changes and im-
portant consequences: injuries to star
basketball players in the NBA. To inves-
tigate the effects of injuries on game
scores and point spreads, Sauer esti-
mated a fixed effects model of the point
spread. The score difference for a game
between teams i and j is assumed to be
a function of four factors: luck, the
home court advantage, the difference in
the strengths of each team relative to
the overall league, and an idiosyncratic
factor relating to this particular match-
up between teams i and j. Denote the
home court advantage by αH, team
strengths by Si and Sj, the idiosyncratic
factor by ε, luck by ω, and let the

56 Note that regressing the forecast error (DP  –
PS) on Xf (i.e. imposing the efficiency restrictions
on α and β alone) yields negative values of RBAR2

for both seasons.

57 These models share a common structure first
developed in the statistics literature by Harville
(1975).
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function g(⋅) map these factors into the
score difference. Assuming i is the
home team and g(⋅) is linear, the score
difference is:

DP = αH + Si − Sj + ε + ω (12)
Using (6) and noting that luck cannot be
anticipated,

PS = αH + Si − Sj + ε (13)
A fixed effects/dummy variable model

is used to obtain estimates of αH and
the team strength variables S. Effi-
ciency implies that the coefficients in
equations (12) and (13) are the same.
These restrictions are satisfied by NBA
data (Sauer 1991, Brown and Sauer
1993a).

Coefficient estimates from the PS
equation are used to predict point
spreads out of sample PSHAT. Sauer
(1991) shows that PSHAT is an
unbiased predictor of PS for games
unaffected by injuries, and that the
forecasts account for 80 to 90 percent
of the variation in PS. It is important
that the forecasts be accurate since
heavy emphasis is placed on PS −
PSHAT. For the sample of games af-
fected by player injuries, Sauer inter-
prets this difference as the market’s
valuation of the injured player.

Now define the order of differencing
such that team i has the injured player
and team j is at normal strength (games
with multiple injuries are excluded).
For injury spells in which players miss a
lengthy series of games, the mean of PS
− PSHAT is –2. That is, the estimated
ability of the team with the injured
player is two points lower, which seems
a small amount for players of all-star
caliber. However, PS is unbiased for
these games, whereas PSHAT is signifi-
cantly biased. Hence, the 2-point ad-
justment in PS represents an efficient
response to the change in a fundamen-
tal factor.

For short injury spells, the adjust-

ment in PS is smaller. The value of the
player is roughly the same, however, so
that PS is significantly biased in games
which the injured player misses (the
team does worse than predicted by the
spread). Sauer shows that this bias
changes magnitude and sign throughout
the injury spell in ways that are
predicted by a model in which player
participation is uncertain. In addition,
the participation probability implied by
the bias closely matches the probability
estimate obtained from a hazard func-
tion explaining the length of injury
spells.58  Hence, given the uncertainty
of playing, the change in PS can be
viewed as an efficient pricing response
to the injury.

Brown and Sauer (1993a) examine
the properties of PS − PSHAT for non-
injury games. Brown and Sauer consider
two opposing hypothesis. One hypothe-
sis is that PS − PSHAT is meaningless
noise. A second is that the residual rep-
resents unobserved fundamentals which
are difficult to include in a systematic
regression. Table 9 presents the mean
forecast errors (MFE) of PSHAT condi-
tional on the value of PS − PSHAT.
Define c = PS − PSHAT as the idiosyn-
cratic component in the market point
spread. Consider cases in which c is 3
points. There are 211 such games in
Brown and Sauer’s sample, with a
MFE(PSHAT) of 2.75 points. For these
games, the idiosyncratic component is
essential to unbiased prediction. The
story is much the same for other values
of c, although the information content
in the tails is weak given the paucity of
observations.

The predominance of positive values

58 Injury spells are defined in the paper by
games which players miss due to injury, which cre-
ates selection bias if the probability that the player
plays in the game is non-zero. Hence, in assessing
the question of efficiency the extent of the selec-
tion bias must be modeled explicitly, which is the
approach taken in the paper.
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of MFE(PSHAT) in Table 9 indicates
that c does not represent meaningless
noise; if it were, these values would be
centered on 0. A fundamentals-based
null hypothesis is that [c − (DP −
PSHAT) | c ] = 0, which requires that
MFE(PSHAT) increase with the value
of c. Brown and Sauer fail to reject this

hypothesis. Brown and Sauer interpret
these results in light of Roll’s inability
to explain stock price changes with a
small scale model. Since the forecast
errors in Table 9 tend to increase with
c, this indicates that c represents
unobserved fundamentals which are
excluded from the team strength model.

Brown and Sauer also identify cases
in which the estimates of team strength
change from season to season, and show
that the changes in these estimates are
essential to unbiased prediction. Brown
and Sauer do not model the adjustment
in team ability estimates, however.

Dana and Knetter (1995) model this
process explicitly using NFL data. Dana
and Knetter examine how the market
incorporates information from score dif-
ferences in revising its estimates of
team abilities. They estimate a version
of equation (12) in which the team
strength estimates follow a random
walk. Efficient updating of these esti-
mates is complicated by the low signal
to noise ratio in score differences. Past
score differences are used to estimate
the team strength parameters, with an
endogenously estimated threshold level
beyond which increases in the score dif-
ference are discounted rather than at-
tributed to relative ability. Other indi-
cators of noise—net turnovers and
penalties—are used as regressors in the
model in an attempt to clean the ability
estimates from these factors.

Dana and Knetter calculate a dis-
count factor of .25 and a threshold of
8.3 points, implying that score differ-
ences beyond 8 points add about 1/4 of
the information on relative ability com-
pared to score differences within 8 points.
The key question is whether market
participants efficiently discount the
noise in large score differences. Dana
and Knetter conduct betting simula-
tions both in and out of sample to exam-
ine this question. These simulations fail

TABLE 9
THE INFORMATION CONTENT OF THE

IDIOSYNCRATIC COMPONENT IN NBA POINT
SPREADS

c
Number of

 Observations
MFE

(PSHAT)
Standard

 Error

 0.0 432 –0.35 10.14
 0.5 744  0.92 11.19
 1.0 624  0.88 10.17
 1.5 535  1.26 11.37
 2.0 398  1.07 11.06
 2.5 307  2.61 11.77
 3.0 211  2.75 11.34
 3.5 162  1.44 10.53
 4.0  90  2.98 12.27
 4.5  57  2.97  9.60
 5.0  35  5.69 12.35
 5.5  21  5.88  8.84
 6.0  14  2.29 12.65
 6.5   7 –0.74  7.05
 7.0   5  8.00  4.85
 7.5   8  4.50 13.69
≥8.0   4 –3.50  6.90

Source: Brown and Sauer 1993a. The data on scores
and spreads are the same as in Table 5.1. c = PS –
PSHAT is the idiosyncratic component of point
spreads, based on out of sample forecasts using pa-
rameters obtained from estimating equation 13. Note
that negative values of PS – PSHAT (and the corre-
sponding forecast errors) have been multiplied by –1.
This conserves table space and statistical power. For
example, suppose that MFE(PSHAT) = –3 for observa-
tions where c = –4. The “adjustment” in the spread of
–4 points accounted for by the unobserved component
is thus 1 point too large. Converting these numbers to 3
and 4 points, respectively, yields the same interpreta-
tion and allows the positive and negative observations
to be pooled.
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to reach the threshold of profitability.
By focusing on games in which noise
may be a relatively large factor, Dana
and Knetter do a bit better. They calcu-
late a variable, DPAR, which stands for
“difference in points attributable to ran-
domness.” When a current game in-
volves two teams with a large value of
DPAR from the prior week, their
model’s success at picking winning bets
against the spread increases to the
verge of profitability. Dana and Knetter
interpret this as an “indication that
learning is inhibited” by the noise in-
herent in game outcomes. Their conclu-
sion stands in contrast to interpreta-
tions of excess volatility in financial
markets, however. Dana and Knetter
observe a form of “excess stability,”
where noise causes agents to “weight
recent observations less than our statis-
tical model suggests is optimal.”

Ultimately, Dana and Knetter report
“scant evidence” against efficiency.
Regardless of this conclusion, what
distinguishes their paper from run-of-
the-mill tests is the explicit modeling of
an important process—learning about a
noisy world—and the pointed questions
that can be asked when such a model is
constructed. More work along these
lines would be a welcome addition to
the literature.

5.5 Point Spread Changes 
   During the Trading Period

In the horse racing context, we have
already seen how changes in odds dur-
ing the trading period improve the bet-
ting market’s estimates of the prob-
ability of winning. A natural question
for the point spread market is whether
trading generates similar improvement.

In the NFL market, Gandar et al.
(1988) compared the mean square error
of point spread forecasts using spreads
from the beginning of the week with
those from the end for the period 1980–

85, and found virtually no difference in
forecast accuracy. They also conducted
an analysis of simple betting rules; the
most successful are three behavioral
rules which propose making wagers in
opposition to recent public sentiment.
Rule #5 reads as follows: “Bet on the
team that becomes less favored (more
of an underdog) over the course of the
week’s betting. In effect, one is gener-
ally betting against the direction bet by
the majority of the public” (p. 1004).
This betting rule achieved a success
rate of 54.9 percent. The two other be-
havioral rules (similarly motivated)
achieved similar success, all being sta-
tistically profitable in the sample. This
evidence stands in contrast to the bulk
of the evidence on point spread pricing
thus far. One can think of several fac-
tors that may cause the efficient point
spread to change over the course of a
week.59  Gandar et al.’s (1988) evidence
is inconsistent with the proposition
that NFL point spread changes are effi-
cient responses to changes in funda-
mentals.

Gandar et al. (1998) examine intra-
day changes in point spreads for NBA
games, and here the conclusion is quite
different. Gandar et al. (1998) contrast
the success of wagers made at the open-
ing and closing spread with a method
analogous to Brown and Sauer (1993a).
They show that, conditional on the
change in the spread, bets at the open-
ing spread are profitable and depart sig-
nificantly from the bounds implied by
equation (5), whereas bets at the clos-
ing spread are a coin flip. In this mar-
ket, observed point spread changes are
necessary to eliminate the existence of

59 For example, a textbook on sports book man-
agement asserts that bad weather reduces scoring
and the score differences between good and bad
teams, calling for adjustments in betting lines
(Roxborough and Rhoden, p. 29). Changes in the
status of injured players during the week also rep-
resent a change in fundamentals.
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profit opportunities—changes in NBA
spreads make them more accurate pre-
dictors of score differences.60  

It is worth emphasizing that changes
in NBA point spreads provide addi-
tional evidence on the importance of
differentially informed agents. Book-
makers are experts who obviously have
very strong incentives to be at least as
well informed as the general betting
public. Hence it is reasonable to conjec-
ture that it is not the typical bettor, but
rather individuals with scarce, highly
specialized information that cause in-
formative adjustments in NBA point
spreads.

5.6 The Hot Hand 

Gambling markets are especially fer-
tile ground for contests between the be-
havioral and economic approaches to
behavior. The behavioral approach em-
phasizes the effects of persistent mis-
perceptions on individual choice and
market outcomes. The economic ap-
proach emphasizes the role of economic
forces in determining outcomes. For ex-
ample, the average sports fan might
have biased perceptions which over-
state the probability that his team
wins a game, but that observation does
not establish that teams with more
fans are poor bets in the point spread
market.

Gilovich, Robert Vallone, and Amos
Tversky (1985) make the case that be-
havior is influenced by biased percep-
tions, in particular, that belief in the hot
hand—non-random streakiness in per-
formance—is a “widely shared cognitive
illusion” (p. 313). They examine field
goal shooting by the members of the
Philadelphia 76ers, free throw shooting
by the Boston Celtics, and free throw
shooting by Cornell University basket-

ball players, and in each case there is no
evidence of serial dependence. Yet in
the Cornell case, the players were will-
ing to bet larger amounts at lower odds
after making a shot, despite the fact
that these shots were no more likely to
be successful than shots after a miss.
Belief in the hot hand, assert Gilovich
et al., is belief in a myth.

Colin Camerer (1993) uses data on
basketball betting to address the mythi-
cal hot hand argument in a repeated,
nonexperimental setting. Camerer finds
that bets on teams with recent winning
streaks (against the point spread) are
slightly more likely to be losers than
winners. Camerer argues on this basis
that the point spread market is an exam-
ple where biased perceptions affect
market prices. The proportion of win-
ning bets, however, does not differ sig-
nificantly from coin-flipping, hence the
evidence is not fully persuasive.

Brown and Sauer (1993b) study the
question using a point spread pricing
model based on equations (12) and (13).
The advantage offered by the pricing
model is its ability to measure any ad-
justments in point spreads that stem
from winning and losing streaks. Brown
and Sauer find strong evidence that
point spreads adjust by about 1/4 of a
point (on average) for teams on a two or
three game winning streak, and by
about 2/3 of a point for teams on a
streak of four or more games. The
model thus confirms the market’s belief
that streaks may represent something
real. Again, efficiency imposes equality
restrictions on the coefficients in the
point spread and score difference equa-
tions. Brown and Sauer fail to reject
these restrictions, a result consistent
with the existence of real streak effects.
Note however that in single equation
estimation, the score differences them-
selves provide no evidence against the
hypothesis that streaks are purely

60 The contrast between these results and those
for the NFL market is a puzzle that calls for expla-
nation.
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random.61  Brown and Sauer thus can-
not reject the hypothesis that the hot
hand is mythical.

Statisticians, with no axe to grind in
the debate between the behavioral and
economic approaches, have also exam-
ined the hot hand phenomenon. S.
Christian Albright (1993) analyzed hit-
ting by professional baseball players.
The number of streaky hitters is consis-
tent with a model in which hitting suc-
cess is serially uncorrelated, with no
persistence in the identity of who is
streaky across seasons. Albright con-
cludes that the stationary, purely ran-
dom model of performance provides a
“reasonably consistent” description of
the data.

Jim Albert (1993) and Stern and Carl
Morris (1993) agree that real (as op-
posed to random) streak effects are dif-
ficult to detect in hitting data. But they
do not accept the argument that the hot
hand is a myth. Stern and Morris argue
that the problem is due to low power
against the random null. Suppose that
the hot hand were to raise the prob-
ability of a hit by as much as .1 during
sub-periods of a season. Even with such
a strong effect, their simulations show
that Albright’s methods lack power and
likely will fail to reject the random null.
Stern and Morris (p. 1189) argue that
emphasis on the random null is mis-
placed in this context: “The evidence
that all of us have obtained as partici-
pants and fans, which suggests that
there are streaks in sports, should be
preferred to the null hypothesis, at least
until reasonably powerful approaches
fail to reject plausible alternatives.”

6. Conclusion

Wagering markets offer a unique set-
ting for economists to study models of
market pricing and choice under uncer-
tainty. They provide a pricing mecha-
nism for financial instruments in a con-
text where outcomes are readily
revealed and the scope of the pricing
problem is reduced.

These features simplify the analysis
of questions that are important in other
contexts, and hence the findings of this
literature have a bearing on economic
issues elsewhere. Early researchers
such as McGlothlin (1956) and Weitz-
man (1965) were not interested in the
racetrack betting market per se, but in
the information available from this mar-
ket on choice under uncertainty. Al-
though the literature on wagering has
since become more specialized, the in-
herent advantages for attacking ques-
tions of general interest remain.

Most of the evidence surveyed here
can be given a coherent equilibrium in-
terpretation, and standard definitions of
market efficiency are generally satis-
fied. The odds generated by racetrack
betting efficiently predict the order of
finish, and provide reasonably good es-
timates of the probability of winning,
the favorite-long shot bias notwith-
standing. As a rule, point spreads are
efficient estimates of the median of the
distribution of score differences. There
is a strong tendency in these markets
for price changes to move in the direc-
tion of outcomes.

Nevertheless, there are empirical
regularities that are inconsistent with
generic notions of efficiency. Although
the representative agent model with
convex preferences can rationalize the
favorite-long shot bias, it fails to explain
why this bias is not present in some
markets. Differences in the rate of re-
turn associated with price changes are

61 An obvious problem for modeling which
Brown and Sauer do not address is that random
outcomes in an efficient market will generate a
two game streak (either winning or losing) in
about half of all two game sequences. An objective
basis for ferreting out which streaks are candidates
for non-randomness and which are not seems
crucial for gaining power against the random null.
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inconsistent with representative agent
models of asset pricing. In addition, sys-
tematic differences in the rates of re-
turn to wagering on the same event at
different locations suggest the impor-
tance of differentially informed agents.

These findings present a challenge to
equilibrium models of the wagering
market. Models emphasizing heteroge-
neous agents, information asymmetries,
and transaction costs have enjoyed
some success in addressing these issues.
More work along these lines is certainly
called for and may advance our under-
standing of the forces that determine
market prices.
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